文章编号:0253-9950(2007)01-0060-05

⁹⁷Tc 制备方法

王丽雄,杨通在,汤 磊,熊宗华,杨 君,姜 涛

中国工程物理研究院核物理与化学研究所,四川 绵阳 621900

摘要:为了采用同位素稀释质谱分析法准确测定环境中的痕量⁹⁹ Tc,需要以⁹⁷ Tc 作稀释剂。采用天然 Ru 为 辐照原料,建立了碱熔→水浸取→沉淀→萃取→阴离子交换的化学分离流程,确定了⁹⁷ Tc 的制备工艺。该流 程的化学产额大于 70%,对 Ru 的去污因子大于 10⁷。

关键词:裂变核素;Tc;分离;Ru

中图分类号: O614.62 文献标识码: A

Preparation of ⁹⁷Tc

WANG Li-xiong, YANG Tong-zai, TANG Lei, XIONG Zong-hua, YANG Jun, JIANG Tao

Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Abstract: The most sensitive analytical technique of ⁹⁹ Tc is isotope dilution mass spectrometry with ⁹⁷ Tc as yield tracer. ⁹⁷ Tc was obtained by the irradiation of 2 g natural ruthenium metal. ⁹⁷ Tc is isolated from the sample by combined ion-exchange chromatography, precipitation and ion-association solvent extraction technique. ⁹⁹ Tc^m and ¹⁰³ Ru are used as tracers in this method. The chemical recovery of Tc is more than 70% and the decontamination factor is more than 10⁷.

Key words: fission nuclide; technetium; separation; ruthenium

⁹⁹ Tc 是一重要的裂变产物核素,由于其低活 性和只发射低能量的 β 粒子,直接测量环境中 ⁹⁹ Tc的浓度十分困难。有关痕量⁹⁹ Tc 的分析,一 般采用⁹⁷ Tc 作稀释剂的同位素稀释质谱分析法。 该方法的检测限可测至 1 pg^[1-4]。⁹⁷ Tc 自然界中 不存在,需要人工生产,⁹⁷ Tc 可由⁹⁷ Ru 衰变得 到。⁹⁷ Ru 生产主要有⁹⁶ Ru(n, γ)⁹⁷ Ru 反应和⁹⁵ Mo (α , 2n)⁹⁷ Ru 反应 2 条途径。采用⁹⁵ Mo 辐照后除 生成 ⁹⁷ Ru 外,还生成 Tc 的其它同位素,如⁹⁴ Tc^m, ⁹⁵ Tc 和 ⁹⁶ Tc, Tc 同位素的存在干扰质谱测量^[5]。

天然丰度的 Ru 粉辐照后,除了生成裂变产 物核素^{sr} Tc 外,仍然存在大量的稳定同位素 ⁹⁹ Ru,¹⁰⁰ Ru,¹⁰¹ Ru 和¹⁰² Ru,这些核素与⁹⁹ Tc 质量 数相同或相近,会影响测量结果的准确性。因此, 需通过化学分离^[6] 消除上述核素干扰。

本实验采用在核动力研究设计院高通量反应 堆上照射金属 Ru 粉制备稀释剂⁹⁷ Tc,重点研究 从大量 Ru 粉中提取 Tc 的化学流程,制备适合 于⁹⁹ Tc 质谱分析用的⁹⁷ Tc 稀释剂。

1 实验部分

1.1 仪器和试剂

GMX 30190-P γ 谱仪,美国 ORTEC 公司, 能量分辨率为 2.2 keV,相对效率 30%,峰康比大 于 60;高压离子交换系统,耐压 0.6 MPa,自行设 计加工; RWF12/5 马弗炉, $0 \sim 1$ 200 C,英国 CARBOLITE。

Dowex1 × 2 阴离子交换树脂,粒径为 0.037~0.074 mm。

⁹⁹ Tc^m 示踪剂,9 g/L NaCl 溶液淋洗 Mo-Tc 发生器得到;¹⁰³ Ru 示踪剂,用高纯铝箔封装天然 Ru 粉 30 mg,在中子注量率为 1.0×10¹³ cm⁻²•s⁻¹的实验堆中心孔道照射 24 h 得到。

天然 Ru 粉,99.97%,北京翠铂林有色金属 技术开发公司;丁酮(C_4H_8O),分析纯; CCl₄, C₂H₅OH,KOH,KNO₃,H₂O₂,均为优级纯;高纯 水,由 Mili-Q系统纯化得到。 1.2 ⁹⁷ Tc 的辐照生产

称取 2 g 天然 Ru 粉用高纯铝箔包装,然后用 铝罐封装,放入中国核动力研究设计院高通量堆 孔道中,在中子注量率为 $1 \times 10^{14} / (\text{cm}^2 \cdot \text{s}^{12})$ 下 照射 30 d,生产⁹⁷ Tc。

2 结果和讨论

2.1 靶料溶解

Ru 是极少数难溶金属之一^[7],不溶于酸和王 水,溶于熔融的强碱、过氧化钠,也可用碳酸钠、氢 氧化钾等作熔剂。在中性和酸性溶液中不稳 定^[8]。为此,研究了天然 Ru 粉的分解条件,结果 列入表 1。

表1 Ru分解条件	
-----------	--

	Table 1	Decomposed	condition	of Ru
--	---------	------------	-----------	-------

分解方式 (Mode of decomposed)	溶剂组成 (Composed of solvent)	分解温度 (Temperature of decomposed)/℃	分解时间 (Time of decomposed)/h	容 器 (Container)	溶解情况 (Result of decomposed)
酸溶 (Acid dissolve)	HCl+HNO ₃ +HClO ₄	300	5	聚四氟乙烯烧杯 (Polytetrafluorethylene beaker)	不溶解 (No dissolve)
碱熔 (Alkali melt)	${ m Na_2O_2}$	800	2	镍坩埚 (Nickel crucible)	不溶解 (No dissolve)
碱熔 (Alkali melt)	KOH	800	2	镍坩埚 (Nickel crucible)	部分溶解 (Part dissolve)
碱熔 (Alkali melt)	$Na_2O_2 + NaOH$	800	2	镍坩埚 (Nickel crucible)	部分溶解 (Part dissolve)
碱熔 (Alkali melt)	Na_2O_2 + $NaOH$	320	8	聚四氟乙烯烧杯 (Polytetrafluorethylene) beaker)	部分溶解 (Part dissolve)
碱熔 (Alkali melt)	$\rm KOH\!+\!K_2CO_3$	320	8	聚四氟乙烯烧杯 (Polytetrafluorethylene beaker)	部分溶解 (Part dissolve)
碱熔 (Alkali melt)	$\rm KOH + KNO_3$	800	8	<mark>瓷坩埚</mark> (Porcelain crucible)	溶解完全 (All dissolve)
碱熔 (Alkali melt)	KOH+KNO ₃	320	8	聚四氟乙烯烧杯 (Polytetrafluorethylene beaker)	溶解完全 (All dissolve)

由表1可见,酸法常压和高压分解方法均不 能使 Ru 分解。采用 KOH 和 KNO3 混合熔剂, 利用碱金属氢氧化物熔点低而硝酸根离子氧化能 力强的特点,且形成 KNO3 • 2KOH 混合物以及 二个低共熔混合物,这样既可在高温 800 °C下,又 可在低温 320 °C下完全分解,是一种比较理想的 熔剂。由于高温熔融存在腐蚀坩埚和溅射等缺 点,选择在 320 ℃碱熔融样品 8 h,使 Ru 彻底分 解。

2.2 Tc 的化学分离流程条件实验

 2.2.1 沉淀分离 蒸馏法是分离纯化锝的常用 方法^[9],但由于样品碱熔融后,主要成分是 KRuO₄,KOH 和少量 KNO₃。当 Tc 以 Tc₂O₇ 被 蒸馏的同时,Ru 也以 RuO₄ 被蒸馏出来,不能完 全分离 Tc-Ru。在 Tc 的分离中采用最多和最简 单易行的是萃取分离。由于本体系中大量 Ru 的 存在,加入有机萃取剂后,KRuO₄ 被还原成 RuO₂ 沉淀,无法直接进行萃取分离。因此首先采用沉 淀法分离除去大部分 Ru,再利用无水乙醇将高价 Ru 还原成 RuO₂ 沉淀,而 TcO₄⁻⁻不被无水乙醇沉 淀^[10]。

碱熔融样品后,控制浸取水量,使溶液保持在 不同 KOH 浓度体系中,分取 30 mL 含有¹⁰³ Ru 示 踪剂的溶液,加 10 mL 无水乙醇,离心 5 min 后, 取上清液进行物理测量,溶液体系对沉淀分离的 影响列入表 2。

表 2 溶液体系对 Ru 去污系数的影响 Table 2 Effect of KOH concentration on decontamination factor of Ru

$c(\text{KOH})/(\text{mol} \cdot \text{L}^{-1})$	$N(^{103}\mathrm{Ru})_\mathrm{add}/$ s^{-1}	$N(^{103}{ m Ru})_{ m rem}/{ m s}^{-1}$	$10^{-3}{ m DF}$
2	28 800	19	1.5
4	28 800	20	1.4
5	28 800	22	1.3
6	28 800	形成悬浊液 (Muddle liquid)	-

由表 2 可知,溶液体系中 KOH 浓度大于 5 mol/L 时严重影响 RuO₂ 沉淀。为保证样品完全 溶解,又不使溶液体积太大,故选择 5 mol/L KOH 为最佳体系。

选定溶液体系为 5 mol/L KOH 后,取 30 mL 含有¹⁰³Ru 示踪剂的溶液,加一定量的无水乙醇,离心 5 min 后取上清液进行物理测量,无水乙醇的加入量对沉淀分离的影响列入表 3。

表 3 无水乙醇的加入量对 Ru 去污因子的影响

Table 3Effect of added ethanol volumeon decontamination factor of Ru

$V(C_2H_5OH)/mL$	$N(^{103}\mathrm{Ru})_\mathrm{add}/$ s^{-1}	$N(^{103}{ m Ru})_{ m rem}/{ m s}^{-1}$	$10^{-3} DF$
5	28 800	23	1.3
10	28 800	22	1.3
15	28 800	20	1.4

由表 3 可知,无水乙醇的加入量对沉淀分离 无太大影响。

选定溶液体系为 5 mol/L KOH 后,分离并 取 30 mL 含有¹⁰³ Ru 示踪剂的溶液,加 10 mL 无 水乙醇,离心一定时间后取上清液进行物理测量, 离心时间对沉淀分离的影响列入表 4。

表 4 离心时间对 Ru 去污因子的影响

 Table 4
 Effect of centrifugation time

on decontamination factor of Ru

t/\min	$N(^{103}\mathrm{Ru})_{\mathrm{add}}/$ s^{-1}	$N(^{103}{ m Ru})_{ m rem}/{ m s}^{-1}$	$10^{-3} DF$
5	28 800	25	1.2
10	28 800	23	1.3
15	28 800	22	1.3

由表 4 可知,离心时间对沉淀分离无太大影响。

通过条件实验确定溶液体系为 5 mol/L KOH,无水乙醇的加入量为溶液体积的 0.5 倍、 离心时间 5 min 为最佳沉淀条件。

2.2.2 溶剂萃取分离 沉淀法除去大部分 Ru 后,接着进行萃取分离进一步提高对 Ru 的去污。 Boyd^[11]作了 Tc 在不同体系、多种萃取剂中的分 配比实验。在碱性介质中,Tc 在吡啶、异己酮、2-丁酮、2-戊酮等萃取剂中有较高的分配系数。加 一定量的⁹⁹Tc^m于 5 mol/L KOH 萃取体系中,加 不同萃取剂,振摇 5 min,静止分相后,取 4 mL 有 机相进行物理测量,实验结果列入表 5。

从表 5 可知,⁹⁹ Tc^m 在 2-丁酮中萃取率最高, 故选其作萃取剂。

表 5 萃取剂对 ⁹⁹ Tc^m 萃取率的影响

Table 5Relationship between 99 Tcm

recovery and extractant

萃取剂 (Extractant)	$N({}^{99}{ m Tc^m})_{{ m (a)}}/{ m s}^{-1}$	$N({}^{99}{ m Tc^m})_{ m (o)}/{ m s^{-1}}$	$E_{\mathrm{ext}}/\%$
异己酮(4-methyl- 2-pentanone)	6 176	923	13.0
2- 丁酮 (2-butanone)	113	6 986	98.0
2- 戊酮 (2-pentanone)	3 284	3 815	54.0

加一定量的⁹⁹ Tc^m于不同浓度 KOH 体系中, 用 2-丁酮萃取,振摇 5 min,静止分相后,取 4 mL 有机相进行物理测量。实验结果列入表 6。

表 6 不同浓度 KOH 萃取体系对 ⁹⁹ Tc^m 萃取率的影响

Table 6 Relationship between ⁹⁹ Tc^m recovery and KOH concentration

$c(\text{KOH})/(\text{mol} \cdot \text{L}^{-1})$	$N(^{99}{ m Tc^m})_{{ m (a)}}/{ m s^{-1}}$	$N(^{99}{ m Tc^m})_{(o)}/{ m s^{-1}}$	$E_{\mathrm{ext}}/\%$
2	49.2	301.4	85.0
4	44.8	326.1	88.0
5	6.5	410.0	98.0
6	50.3	364.3	88.0

从表 6 可知,不同浓度 KOH 的萃取体系对 萃取结果影响不是很大,选择 5 mol/L KOH 作 最佳体系。因 2-丁酮在酸性、碱性和中性介质中 均有较高的分配系数,在萃取后的有机相中加入 CCl4 惰性稀释剂后,可用 1 mol/L HNO3 将 Tc 反萃至水相。

2.2.3 阴离子交换分离 由于样品中 Tc 的含量很低,为防止微量的 Tc 被大量的 RuO₂ 沉淀载带吸附,在进行 Tc-Ru 沉淀分离时需加入 Tc 的非同位素载体 Re。

采用¹⁸⁸Re,⁹⁹Tc^m 示踪剂混合液上高压阴离 子交换树脂柱,通入约 0.3 MPa 氮气,控制淋洗 液流速为 1 mL/min,先用 0.2 mol/L HClO₄ 洗 脱 Re,再用 2 mol/L HClO₄ 梯度洗脱 Tc,每隔一 定淋洗体积,收集淋洗液,在 γ 谱仪上相对测量, 绘制淋洗曲线,实验结果示于图 1。

图 1 TcO₄⁻-ReO₄⁻**阴离子交换分离曲线** Fig. 1 Anion-exchange separation of perrhenate and pertechnetate

2.3 ⁹⁷ Tc 提取流程

按条件实验中确定的最佳条件进行⁹⁷ Tc的提 取流程操作。在 2 g 天然 Ru 粉中加入 30 g KOH,10 g KNO₃, Re 载体和示踪剂 (⁹⁹ Tc^m, ¹⁰³ Ru和¹⁸⁶ Re)在 320 ℃ 下碱熔融样品 8 h,熔体 冷却后,加 100 mL H₂O 浸取;20 mL 无水乙醇将 碱熔后的高价 Ru 还原成 RuO₂ 沉淀,离心 10 min,弃去沉淀, TcO₄⁻ 不被沉淀,留在溶液中;水 浴加热使溶液中的无水乙醇完全挥发后,加入等 体积 C₄ H₈O 萃取 TcO₄⁻ ,振摇 5 min,静止分相, 加 CCl₄ 和 1 mol/L HNO₃ 反萃;再通过阴离子交 换柱进一步分离,产额为 86%,全流程产额为 71%。大量金属 Ru 粉中 Tc 的提取流程实验示 于图 2。

2.4 流程化学产额的测定

定量加入⁹⁹ Tc^m 示踪剂,按实验方法中建立 的⁹⁷ Tc 的化学分离流程操作,测定了流程的分步 化学产额和全流程的化学产额。无水乙醇将碱熔 后的高价 Ru 还原成 RuO₂ 沉淀后,TcO₄⁻⁻ 不被 沉淀,留在溶液中,产额为 96%;水浴加热使溶液 中的无水乙醇完全挥发后,加入等体积 C₄ H₈ O 萃 取 TcO₄⁻⁻,振摇 5 min,静止分相,加 CCl₄ 和 1 mol/L HNO₃ 反萃,产额为 86%;再通过阴离 子交换柱进一步分离,产额为 86%,全流程产额 为 71%。

2.5 流程去污因子的测定

定量加入¹⁰³ Ru 示踪剂,按实验方法中建立 的⁹⁷ Tc 的化学分离流程操作,测定了流程各步骤 对 Ru 的去污因子和全流程对 Ru 的去污因子。 无水乙醇将碱熔后的高价 Ru 还原成 RuO₂ 沉淀 分离后,对 Ru 的去污因子为 3.2×10^3 ; C₄ H₈ O 萃取 TcO₄⁻⁻,对 Ru 的去污因子为 437.5,较好地 实现了 Ru 与 Tc 的分离;再通过上阴离子交换柱 进一步分离,对 Ru 的去污因子为 16,全流程对 Ru 的去污因子可达 2.3×10^7 。

3 结 论

本实验建立了从大量 Ru 粉中提取 Tc 的化 学流程。由于表面热电离质谱方法尚未建立,质 谱测量要求 n(Tc)/n(Ru)至少大于 10,故要求对 Ru 的去污因子至少大于 10^7 。本实验所建流程 的全流程化学产额可达 70%,对 Ru 的去污因子 大于 10^7 ,可满足质谱测量要求。

参考文献:

- [1] Donald J R, Norman C S, Kurt W. Mass Spectrometry of Technetium at the Subpicogram Levelanal[J]. Anal Chem, 1990, 62: 1 271-1 274.
- [2] Anderson T J. Development of Chemical Isolation and Concentration Techniques for Tc-99 Analysis by Resin-Bead Mass Spectrometry: South Carolina 29801, DP-MS-79-59 [R]. E I du Pont de Nemours and Co Savannah River Laboratory Aiken, 1979.
- [3] Kay J H, Ballou N E. Determination of Technetium by Graphite Furnace Atomic Absorption Spectrometry: Usdoe Report Pnl-sa-6848 [R]. Richlsnd: Washington Pacific Northwest Laboratories, 1978.
- [4] Hiroshi Hidaka, Kazuya Takahashi, Holliger. Migration of Fission Products Into Micro-Minerals of the Oklo Natural Reactors [J]. Radiochim Acta, 1994, 66: 463-468.
- [5] Kobayashi T, Sueki K, Ebihara M. Decay Properties of ^{97m,g}Tc[J]. Nucl Phys A, 1998, 636: 367-378.

- [6] Nichollson K W. Environmental Signatures of Undeclared Nuclear Facilities and Their Detection, AEV Technology, Culham Laboratory, Abingdon, Oxon, UK, 1996: 2.
- Wyatt E I, Rickard R R. The Radiochemistry of Ruthenium, National Academy of Sciences Nuclear Sciences Series: Document NAS-NS-3029 [R].
 Washington, D C: USAEC, 1961.
- [8] Anders E. The Radiochemistry of Technetium, National Academy of Sciences Nuclear Sciences Series: Document NAS-NS-3021[R]. Washington, D C: USAEC, 1960.
- [9] 涅斯米扬诺夫 Ah H. 放射化学[M]. 北京: 原子能 出版社, 1985.
- [10] 张绪立.⁹⁹ Tc 的放射化学分析[J]. 原子能科学技 术,1975,13(1):24-29.
- [11] Boyd G E, Larson Q V. Solvent Extraction of Heptavalent Technetium [J]. Radiochimi Acta, 1960, 64: 988-996.