文章编号:0253-9950(2003)04-0193-06

# 硝酸铝存在下稀 TBP/ 煤油对 低浓度 UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> 和 HNO<sub>3</sub> 的萃取

## 朱兆武,胡景炘,何建玉,郑卫芳

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:硝酸铝存在下,测定了  $UO_2(NO_3)_2(初始质量浓度为 2.5 g/L)$ 和  $HNO_3(初始浓度为 0~2 mol/L)$ 在稀 TBP/煤油(10%)和水相溶液之间的分配比,并采用非线性最小二乘法拟合了  $UO_2(NO_3)$ 和  $HNO_3$ 的表观 萃取平衡常数表达式。利用拟合得到的平衡常数计算得到的 D(U(-))和  $D(H^+)$ 与实验值符合较好, D(U(-))平均偏差约为 10%, $D(H^+)$ 的平均偏差小于 5%。

**关 键 词**: U(); 硝酸铝; 盐析; 稀 TBP/ 煤油; 分配比

**中图分类号**: O614.62 文献标识码: A

开发 PUREX 流程计算程序对流程新工艺的 研究和应用具有重要意义,而实验数据的积累是 开发计算程序的基础。由于核临界的限制,在对 高浓铀元件的后处理中,要求 PUREX 流程中铀 的进料浓度较低(一般小于 10 g/L),而且采用稀 TBP 溶液 (体积分数一般小于 10 %) 作萃取剂。 由于 TBP 浓度低,为了增大 U 的分配比,流程常 在大量盐析剂(如硝酸铝)存在下运行<sup>[1~3]</sup>。目 前,对铀和硝酸在 30 % TBP/ 煤油中的分配比已 测得了大量的数据<sup>[4]</sup>,并建立了许多分配比的经 验模型<sup>[5~7]</sup>。但是.在大量硝酸铝存在下用这些 模型计算时.稀 TBP 萃取铀和硝酸的分配比会有 较大的偏差。为了更精确地开发计算程序来模拟 稀 TBP 萃取流程,本文测定硝酸铝存在下 UO2(NO3)3和 HNO3 在稀 TBP/ 煤油和 HNO3 水 溶液中的分配比,并采用最小二乘法拟合表观萃 取平衡常数对 NO3 浓度的经验关系式。

#### 1 实验部分

#### 1.1 试剂和仪器

磷酸三丁酯(TBP),分析纯,北京化学试剂公司产品,使用前分别用 25 g/L Na<sub>2</sub>CO<sub>3</sub> 和 0.1 mol/L HNO<sub>3</sub> 溶液各洗两次后,水洗到中性;无色

加氢煤油,兰州核燃料厂产品,用 0.005 mol/L KMnO<sub>4</sub> 洗两次,然后水洗两次;UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>. 6H<sub>2</sub>O,分析纯,兰州核燃料厂生产,溶于去离子水 制得 U()水溶液;硝酸铝,分析纯,北京化学试 剂公司产品;其它试剂均为分析纯或试剂纯。

755B 型分光光度计,上海分析仪器厂产品; 循环水超级恒温槽,温度波动为 ±0.1 ,重庆四 达科仪公司产品。

#### 1.2 实验方法

1.2.1 Al(NO<sub>3</sub>)<sub>3</sub>和 U()溶液中自由 HNO<sub>3</sub>浓 度的测定 取一定量待测溶液于烧杯中,以复合 电极指示溶液的 pH,然后用标准 NaOH 溶液滴 定,制作 NaOH 溶液消耗体积与 pH 关系曲线。 作曲线的切线,从切线交点的中点计算滴定终点 消耗 NaOH 溶液的体积。滴定曲线如图 1 所示。 对于酸浓度低的样品,标准碱浓度适当降低。

1.2.2 U()浓度的测定 U()质量浓度大 于1g/L时采用重铬酸钾容量法测定:在混合酸 (1 mol/L HNO<sub>3</sub>-1 mol/L H<sub>2</sub>SO<sub>4</sub>-0.1 mol/L NH<sub>2</sub>SO<sub>3</sub>H)中,用过量的三氯化钛还原U()到 U();放置约10 min,使过量的钛被空气氧化到 高价,然后以硫酸铁和二苯胺碘酸钠为指示剂,用

作者简介:朱兆武(1966--),男,山东夏津人,副研究员,无机化学专业。

收稿日期:2002-12-02; 修订日期:2003-01-06

0



#### 图 1 大量 Al(NO<sub>3</sub>)<sub>3</sub> 存在下 自由 HNO<sub>3</sub> 的滴定曲线

Fig. 1 Titration curve of free nitric acid at the presence of large amount of  $Al(NO_3)_3$  $c(Al(NO_3)_3) = 0.6 \text{ mol/L}, c(NaOH) = 0.200 0 \text{ mol/L}$  0.05 mol/L 的重铬酸钾标准溶液滴定。U()质 量浓度小于1g/L 时采用比色分析法<sup>[8]</sup>测定。 **1.2.3**分配比的测定 取等体积含U()-HNO<sub>3</sub>-Al(NO<sub>3</sub>)<sub>3</sub>的水相溶液和 TBP/煤油萃取剂 于离心试管中,恒温振荡达到平衡。离心分相后 分别测定水相和有机相中U()和 HNO<sub>3</sub>的浓度, 计算不同条件下U()和 HNO<sub>3</sub>的分配比。

#### 2 结果和讨论

### 2.1 U()和 HNO3 在 3.5 %和 5.0 %TBP/ 煤油 中的分配比

恒温 25 ,HNO3 起始浓度为 0.6 mol/L,U ()的起始质量浓度为 2.5 g/L 时,在不同硝酸 铝浓度下,用 3.5 %和 5.0 % TBP/煤油萃取,测得 U()和 H<sup>+</sup>的分配比结果列入表 1。

表 1 Al(NO<sub>3</sub>)<sub>3</sub>存在下 U()及 H<sup>+</sup>在稀 TBP/煤油和水相溶液中的分配比

Table 1 Distribution ratios of U( ) and  $H^+$  between

| dilute TBP/ kerosene and | aqueous solution in | the presence of | $Al(NO_3)_3$ |
|--------------------------|---------------------|-----------------|--------------|
|--------------------------|---------------------|-----------------|--------------|

|                                                                     | 3.5%TBP/煤油(Kerosene)                                                       |                                                                |                   |         | 5.0%TBP/煤油(Kerosene)                                                       |                                                                    |                   |         |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|---------|----------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|---------|
| c (AI (NO <sub>3</sub> ) <sub>3</sub> )<br>/ (mol L <sup>-1</sup> ) | $c(\mathrm{H}^+)_{(\mathrm{a},\mathrm{eq})}$<br>/ (mol $\mathrm{L}^{-1}$ ) | $c(\mathrm{UO}_2^{2^+})_{(a,eq)}$<br>/ (mmol L <sup>-1</sup> ) | $D(\mathrm{H}^+)$ | D(U( )) | $c(\mathrm{H}^+)_{(\mathrm{a},\mathrm{eq})}$<br>/ (mol $\mathrm{L}^{-1}$ ) | $c(\mathrm{UO}_{2}^{2^{+}})_{(a,eq)}$<br>/ (mmol L <sup>-1</sup> ) | $D(\mathrm{H}^+)$ | D(U( )) |
| 0                                                                   | 0.100                                                                      | 10.45                                                          | -                 | 0.0057  | 0.100                                                                      | 10.38                                                              | -                 | 0.012   |
| 0.4                                                                 | 0.098                                                                      | 7.10                                                           | 0.022             | 0.48    | 0.097                                                                      | 5.49                                                               | 0.031             | 0.91    |
| 0.6                                                                 | 0.097                                                                      | 4.67                                                           | 0.033             | 1.25    | 0.096                                                                      | 3.00                                                               | 0.047             | 2.50    |
| 0.8                                                                 | 0.095                                                                      | 2.28                                                           | 0.047             | 3.61    | 0.094                                                                      | 1.38                                                               | 0.069             | 6.60    |
| 1.0                                                                 | 0.093                                                                      | 1.01                                                           | 0.067             | 9.42    | 0.091                                                                      | 0.55                                                               | 0.099             | 18.1    |
| 1.4                                                                 | 0.088                                                                      | 0.19                                                           | 0.137             | 54.8    | 0.083                                                                      | 0.06                                                               | 0.207             | 161     |
| 1.6                                                                 | 0.084                                                                      | 0.07                                                           | 0.192             | 150     | 0.078                                                                      | 0.03                                                               | 0.292             | 325     |
| 0                                                                   | 0.594                                                                      | 9.41                                                           | 0.010             | 0.12    | 0.592                                                                      | 8.39                                                               | 0.014             | 0.25    |
| 0.4                                                                 | 0.584                                                                      | 5.60                                                           | 0.027             | 0.88    | 0.577                                                                      | 4.29                                                               | 0.039             | 1.45    |
| 0.6                                                                 | 0.578                                                                      | 3.14                                                           | 0.037             | 2.34    | 0.569                                                                      | 2.20                                                               | 0.054             | 3.78    |
| 0.8                                                                 | 0.572                                                                      | 1.91                                                           | 0.049             | 4.50    | 0.559                                                                      | 1.18                                                               | 0.073             | 7.93    |
| 1.0                                                                 | 0.563                                                                      | 1.09                                                           | 0.065             | 8.67    | 0.547                                                                      | 0.63                                                               | 0.097             | 15.6    |
| 1.4                                                                 | 0.546                                                                      | 0.41                                                           | 0.102             | 24.4    | 0.523                                                                      | 0.24                                                               | 0.155             | 43.1    |
| 1.6                                                                 | 0.538                                                                      | 0.29                                                           | 0.121             | 35.0    | 0.512                                                                      | 0.16                                                               | 0.186             | 64.0    |
| 1.8                                                                 | 0.531                                                                      | 0.23                                                           | 0.138             | 45.3    | 0.503                                                                      | 0.10                                                               | 0.215             | 101     |
| 0                                                                   | 0.985                                                                      | 8.22                                                           | 0.015             | 0.28    | 0.979                                                                      | 6.99                                                               | 0.021             | 0.50    |
| 0.4                                                                 | 0.970                                                                      | 4.23                                                           | 0.030             | 1.49    | 0.958                                                                      | 2.94                                                               | 0.044             | 2.58    |
| 0.6                                                                 | 0.962                                                                      | 2.77                                                           | 0.039             | 2.80    | 0.946                                                                      | 1.72                                                               | 0.057             | 5.11    |
| 0.8                                                                 | 0.953                                                                      | 1.76                                                           | 0.049             | 4.96    | 0.932                                                                      | 1.07                                                               | 0.073             | 8.80    |
| 1.0                                                                 | 0.944                                                                      | 1.13                                                           | 0.060             | 8.31    | 0.918                                                                      | 0.67                                                               | 0.090             | 14.7    |
| 1.4                                                                 | 0.927                                                                      | 0.62                                                           | 0.082             | 15.9    | 0.895                                                                      | 0.31                                                               | 0.125             | 32.5    |
| 1.6                                                                 | 0.921                                                                      | 0.43                                                           | 0.090             | 23.4    | 0.886                                                                      | 0.21                                                               | 0.139             | 47.9    |
| 1.8                                                                 | 0.917                                                                      | 0.34                                                           | 0.097             | 29.7    | 0.880                                                                      | 0.17                                                               | 0.150             | 59.6    |
| 0                                                                   | 1.955                                                                      | 5.79                                                           | 0.023             | 0.81    | 1.937                                                                      | 4.33                                                               | 0.032             | 1.42    |
| 0.4                                                                 | 1.936                                                                      | 3.26                                                           | 0.033             | 2.22    | 1.908                                                                      | 1.92                                                               | 0.048             | 4.47    |
| 0.6                                                                 | 1.927                                                                      | 2.36                                                           | 0.038             | 3.45    | 1.894                                                                      | 1.40                                                               | 0.056             | 6.48    |
| 0.8                                                                 | 1.919                                                                      | 1.72                                                           | 0.043             | 5.12    | 1.883                                                                      | 1.06                                                               | 0.064             | 8.87    |
| 1.0                                                                 | 1.913                                                                      | 1.54                                                           | 0.047             | 5.84    | 1.874                                                                      | 0.84                                                               | 0.070             | 11.5    |
| 1.4                                                                 | 1.905                                                                      | 1.17                                                           | 0.052             | 8.00    | 1.862                                                                      | 0.62                                                               | 0.078             | 15.9    |
| 1.6                                                                 | 1.902                                                                      | 1.06                                                           | 0.053             | 8.87    | 1.858                                                                      | 0.57                                                               | 0.081             | 17.3    |

195

从表 1 可以看出,随着 Al (NO<sub>3</sub>)<sub>3</sub> 浓度增大, D(U())和  $D(H^+)$ 迅速增大,特别是在低酸度条 件下,D(U())随 Al (NO<sub>3</sub>)<sub>3</sub> 浓度增大非常迅速。 这是由于 Al (NO<sub>3</sub>)<sub>3</sub> 提供的大量 NO<sub>3</sub> 促使萃取平 衡向有利于 U()和 H<sup>+</sup>萃取的方向移动。同时, 由于 Al<sup>3+</sup>离子势较大,结合水的作用强,使 U() 和 H<sup>+</sup>在水相中的有效浓度增大,也有利于 U() 和 H<sup>+</sup>的萃取。U()和 HNO<sub>3</sub> 在 TBP/煤油和 HNO<sub>3</sub> 溶液中的分配服从下列平衡:

$$UO_{2(a)}^{2+} + 2NO_{3(a)}^{-} + 2TBP_{(o)} \underbrace{\frac{K(U(-))}{5}}_{UO_{2}} UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}, \qquad (1)$$

由式(1),(2)可得:

 $H_{a}^{+}$ 

$$D(U()) = K(U()) c^{2}(NO_{3}) (a) c^{2}(TBP) (b), (3)$$

 $D(H^+) = K(H^+) c(NO_3)_{(a)} c(TBP)_{(o)} . (4)$ 式中, K(U(-))和  $K(H^+)$ 分别为 U(-)和 HNO<sub>3</sub> 的萃取表观平衡常数。

根据表 1 中的数据,由式 (3) 和式 (4) 计算不 同条件下的表观平衡常数 K(U(-))和  $K(H^+)$ , 并用最小二乘法拟合出 K(U(-))和  $K(H^+)$ 对  $c(NO_3)$ 的非线性关系,结果示于图 2 和图 3。图  $2_3$ 中,当 $c(NO_3)$ 为  $1.3 \sim 6.7$  mol/L 时,U(-) 和 H<sup>+</sup>在 TBP/ 煤油-HNO<sub>3</sub> 溶液中分配的经验关 系式和相关系数分别为:

 $K(U()) = 4.596 \ 3 \ e^{0.929 \ 0 c(NO_3^{-})}, r = 0.996 \ 0;$ 

 $K(H^+) = 0.0697 e^{0.371 2c(NO_3^-)}, r = 0.9931$ 。 铀酸共萃时有下列关系:







其中, $c(\text{TBP})_{T}$ 为 TBP 的总浓度, $c(U())_{(0)}$ 和  $c(\text{HNO}_{3})_{(0)}$ 分别为有机相中 U()和 HNO<sub>3</sub>的 浓度。联立(3),(4)和(5)式可以求得在水相组成 一定时的铀酸分配比<sup>[9]</sup>:

$$\begin{split} \sqrt{D(U())} &= -\frac{g}{4} \left[ 1 - \sqrt{1 + \frac{8c(\text{TBP})_{\text{T}}}{g^2 c(U())}} \right], \\ D(\text{H}^+) &= \\ -\frac{g}{2} \left[ 1 - \sqrt{1 + \frac{2K^2(\text{H}^+)c(\text{TBP})_{\text{T}}}{K(U())c(U()) \cdot q^2}} \right] \circ \\ \breve{\sharp \Psi} : \end{split}$$

$$g = \frac{1 + K(\mathrm{H}^{+}) c(\mathrm{H}^{+})_{(a)} c(\mathrm{NO}_{3}^{-})_{(a)}}{\sqrt{K(\mathrm{U}(-))} c(\mathrm{NO}_{3}^{-})_{(a)} c(\mathrm{U}(-))_{(a)}},$$
  
$$q = \frac{K(\mathrm{H}^{+}) / 1 + K(\mathrm{H}^{+}) c(\mathrm{H}^{+})_{(a)} c(\mathrm{NO}_{3}^{-})_{(a)} / 2 K(\mathrm{U}(-)) c(\mathrm{NO}_{3}^{-})_{(a)} c(\mathrm{U}(-))_{(a)}},$$

利用拟合得到的关系式,对 3.5%和 5% TBP/煤油萃取 2.5 g/L U()时的 D(U())和 D(H<sup>+</sup>)进行计算,计算值和实验值的比较结果示 于图 4,5。由图 4,5 看出,计算值与实验观察值



符合较好。由于实验准确性的原因,在图 4 中舍 弃了 *D*(U())大于 100 的值。其中,*D*(U()) 的平均相对误差为 10.1%,*D*(H<sup>+</sup>)的平均相对 误差为 4.1%。





3.5%,5%TBP/煤油(Kerosene).

 $(U())_{(a,0)} = 2.5 \text{ g/L}, T = 298 \text{ K}$ 

#### 2.2 经验公式对铀浓度和 TBP 浓度的适用性

在 25 下,当起始铀浓度不同时,以 5.0% TBP/煤油为萃取剂,U()和 HNO<sub>3</sub>的分配比测 定结果列入表 2;当 TBP 浓度不同,铀起始浓度 为 2.5 g/L 时,测得 U()和 HNO<sub>3</sub>的分配比列 入表 3。由表 2 和表 3 可以看出,当铀浓度增大 时,D(U())和  $D(H^+)$ 都有所减小,而当 TBP 体积分数增大时,D(U())和  $D(H^+)$ 都增大。 利用上面的关系式计算不同起始铀浓度和不同 TBP 浓度时的 D(U())和  $D(H^+)$ ,计算值与实 验观察值示于图 6 和图 7。从图 6 和图 7 看出, 两者符合较好,D(U())计算值的平均相对误 差为 11.3%, $D(H^+)$ 的平均相对误差为 3.9%。 说明在硝酸铝的盐析条件下拟合的经验关系式对 起始铀浓度小于 10 g/L, TBP 体积分数小于 10% 时都有好的适用性。

| Table 2 Distribution ratios of $HNO_3$ and U( ) at various initial uranium concentrations |                                                                          |                                                          |                   |         |                                                                            |                                      |                   |         |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|-------------------|---------|----------------------------------------------------------------------------|--------------------------------------|-------------------|---------|
|                                                                                           | 0.8 mol/L Al(NO <sub>3</sub> ) <sub>3</sub>                              |                                                          |                   |         | 1.6 mol/L Al(NO <sub>3</sub> ) <sub>3</sub>                                |                                      |                   |         |
| $(U( ))_{(a,0)}$<br>/ (g L <sup>-1</sup> )                                                | $c(\mathrm{H}^+)_{(\mathrm{a},\mathrm{eq})}$<br>/ (mol L <sup>-1</sup> ) | $c(\mathbf{U}(\ ))_{(a,eq)}$ / (mmol $\mathbf{L}^{-1}$ ) | $D(\mathrm{H}^+)$ | D(U( )) | $c(\mathrm{H}^+)_{(\mathrm{a},\mathrm{eq})}$<br>/ (mol $\mathrm{L}^{-1}$ ) | $c(U( ))_{(a,eq)}$ $/ (mmol L^{-1})$ | $D(\mathrm{H}^+)$ | D(U( )) |
| 0.5                                                                                       | 0.556                                                                    | 0.20                                                     | 0.080             | 9.55    | -                                                                          | -                                    | -                 | -       |
| 1.0                                                                                       | 0.557                                                                    | 0.41                                                     | 0.078             | 9.29    | 0.506                                                                      | 0.05                                 | 0.201             | 90.5    |
| 5.0                                                                                       | 0.563                                                                    | 2.76                                                     | 0.065             | 6.60    | 0.521                                                                      | 0.31                                 | 0.161             | 66.6    |
| 7.5                                                                                       | 0.567                                                                    | 4.80                                                     | 0.058             | 5.57    | 0.532                                                                      | 0.53                                 | 0.137             | 58.4    |
| 10.0                                                                                      | 0.571                                                                    | 7.75                                                     | 0.051             | 4,42    | 0.542                                                                      | 1.00                                 | 0.113             | 40.9    |

表 2 不同起始铀浓度下 HNO<sub>3</sub> 和 U( )的分配比

注(Note):  $c(HNO_3)_{(a,0)} = 0.6 \text{ mol/L}$ 

#### 表 3 不同 TBP 浓度下 HNO<sub>3</sub> 和 U()的分配比

Table 3 Distribution ratios of  $HNO_3$  and U( ) at various TBP concentrations

|         | 0.8 mol/L Al(NO <sub>3</sub> ) <sub>3</sub>   |                                              |                   |         | 1.6 mol/L Al(NO <sub>3</sub> ) <sub>3</sub>                      |                                              |                   |         |
|---------|-----------------------------------------------|----------------------------------------------|-------------------|---------|------------------------------------------------------------------|----------------------------------------------|-------------------|---------|
| (TBP)/% | $c(H^+)_{(a,eq)}$<br>/ (mol L <sup>-1</sup> ) | $c(U( ))_{(a,eq)}$ / (mmol L <sup>-1</sup> ) | $D(\mathrm{H}^+)$ | D(U( )) | c(H <sup>+</sup> ) <sub>(a,eq)</sub><br>/ (mol L <sup>-1</sup> ) | $c(U( ))_{(a,eq)}$ / (mmol L <sup>-1</sup> ) | $D(\mathrm{H}^+)$ | D(U( )) |
| 1.0     | 0. 592                                        | 7.43                                         | 0.014             | 0.41    | 0.586                                                            | 3.46                                         | 0.024             | 2.04    |
| 2.0     | 0.584                                         | 4.17                                         | 0.027             | 1.52    | 0.567                                                            | 0.89                                         | 0.059             | 10.8    |
| 3.5     | 0.572                                         | 1.91                                         | 0.049             | 4.50    | 0.538                                                            | 0.29                                         | 0.121             | 35.0    |
| 5.0     | 0.559                                         | 1.18                                         | 0.073             | 7.93    | 0.512                                                            | 0.14                                         | 0.186             | 74.0    |
| 7.5     | 0.539                                         | 0.53                                         | 0.113             | 19.0    | 0.473                                                            | 0.05                                         | 0.301             | 202     |
| 10.0    | 0.520                                         | 0.38                                         | 0.153             | 26.4    | 0.439                                                            | 0.03                                         | 0.422             | 417     |

注(Note):  $c(HNO_3)_{(a,0)} = 0.6 \text{ mol/L}$ 



图 6 铀起始浓度和 TBP 浓度不同时 D(U(VI))计算值对实验值作图

Fig. 6 Calculated values of D(U(N)) versus corresponded observed values

#### 2.3 温度影响的校正

当铀起始浓度为 2.5 g/L 时,在不同温度下, 以 5.0 % TBP/ 煤油为萃取剂,测得 D(U())的 结果列入表 4。从表 4 可以看出,随温度升高, D(U())减小,说明 U()在 TBP/煤油和 HNO3 溶液中的分配是放热过程。

按文献[10]方法,以ln K(U())<sub>T</sub> 对 1/T 作图结果示于图 8。由图 8 看出, ln K(U()), 对1/T作图可以得到斜率约为3500的直线。 所以在稀 TBP/煤油萃取低浓度 U()时, *K*(U())<sub>T</sub>可按下式进行温度校正:*K*(U) ())  $_{T} = K(U())_{298} \times e^{3500(1/T-1/298)} \text{ or } \overline{B}$ 温度校正后的经验公式计算不同温度下的 D(U ()),结果也列入表 4。从表 4 看出,计算值与 实验值符合较好,计算值对实验值的平均相对误 差为 9.3%。

#### 表 4 不同温度下 D(U())的计算结果和实验结果 Table 4 Calculated results

| <i>T</i> / K | 0.8 mol/L /    | $(NO_3)_3$     | 1.6 mol/L Al(NO <sub>3</sub> ) <sub>3</sub> |                |  |  |
|--------------|----------------|----------------|---------------------------------------------|----------------|--|--|
|              | $D(U())_{obs}$ | $D(U())_{cal}$ | $D(U())_{obs}$                              | $D(U())_{cal}$ |  |  |
| 298          | 7.93           | 9.18           | 74.0                                        | 83.4           |  |  |
| 308          | 5.68           | 6.49           | 61.9                                        | 61.2           |  |  |
| 318          | 4.69           | 4.77           | 40.9                                        | 43.9           |  |  |
| 328          | 3.74           | 3.55           | 27.7                                        | 31.8           |  |  |
| 343          | 2.66           | 2.34           | 18.0                                        | 21.0           |  |  |

注 (Notes): c (HNO<sub>3</sub>) (a.0) = 0.6 mol/L, (TBP) = 5%, (U()) = 2.5 g/L

#### 3 结 论

硝酸铝对稀 TBP/ 煤油萃取低浓度 U()具



有较大的盐析作用。特别是在低酸度条件下, D(U())随硝酸铝浓度增加显著增大。在硝酸 铝存在下,可以用指数形式拟合稀 TBP/煤油萃  $\mathbb{R}$ U()和 HNO<sub>3</sub>的表现平衡常数对 NO<sub>3</sub>的关 系。在硝酸铝存在下,当 TBP 体积分数小于 10%,U()起始质量浓度小于 2.5 g/L, HNO3 起始浓度为 0.1~2 mol/L 时,利用拟合的经验关 系可以较准确地计算 D(U())和  $D(H^+)$ 值。 舍弃 D(U())大于 100 的值, D(U())计算值 对实验值的平均相对误差约为 10%,而  $D(H^+)$ 的平均相对误差小于 5%。

3.2

 $10^{3}T^{-1}/K^{-1}$ 

图 8 K(U())与 1/T 的经验关系

Fig. 8 Relationship of K(U()) and 1/T

 $1 - c(Al(NO_3)_3) = 1.6 \text{ mol/L}, c(HNO_3)_0 = 0.6 \text{ mol/L};$ 

 $2 - c(Al(NO_3)_3) = 0.8 \text{ mol/L}, c(HNO_3)_0 = 0.6 \text{ mol/L}$ 

34

#### 参考文献:

10

28

[1] 胡景炘,林壁鉴,赵沪根,等.49-3元件后处理溶剂 萃取串级实验[A]. 乏燃料后处理工艺[C]. 北京:原 子能出版社,1978.64~78.

- [2] ORTH D A, MARTIN W H, PICKETT C E. Err riched Uranium Processing With 7-1/2 % TBP[R]: DP-MS-83-1. Denver, Co (USA): International Solvent Extraction Conference, 1983. 1~16.
- [3] GOODE J H, FLANARY J R. Laboratory Development of a Tributyl Phosphated Solvent Extraction Process for 20% Enriched Uranium Alloy Fuel [R]: ORNL-2855. Tennessee (USA): Oak Ridge National Laboratory, 1960. 10~25.
- [4] PETRICH G, KOLARIK Z. The 1981 Purex Distribution Data Index[R]: KFK 3080. Germany: Kernforschungszentrum Karlsruhe, 1981.
- [5] KOLARIK Z, PETRICH G. A Mathematic Model of Distribution Equilibria in the Extraction of U() Pu
  (), Np(), Np(), and Nitric Acid by 30% Tributyl Phosphate (TBP) in Aliphatic Diluents [J]. Ber Bunsenges Phys Chem, 1979, 83:1 110~1 113.
- [6] CULLER FL, JURYSH, WHATLEYE. Equilib-

rium Calculation in the System : Uranyl Nitrate, Nitric Acid, Water, TBP, and Kerosene. Dilute Using the ORACLE Digital Computer [R]: CF 59-8-122. Tennessee(USA): ORNL Central Film. Oak Ridge National Laboratory, 1959. 1 ~ 28.

- [7] MITCHELL A D. Use of the SEPHIS MOD4 Program for Modeling the Purex and Thorex Solvent Extraction Process[J]. Sep Sci Technol, 1981,16(10):1 299~1 319.
- [8] 朱兆武,胡景/f,叶国安.U()在稀 TBP 煤油-硝酸
   水溶液中的分配[J].核化学与放射化学,2000,22
   (3):166~171.
- [9] 吴华武,崔秉懿.核燃料化学工艺学[M].北京:原子 能出版社,1987.216~217.
- [10] FORTLA. Plutonium uranium Partitioning Alternate Flowsheet [R]: ARH CD-510. Richland, Washington : Atlantic Richfield Hanford Company, 1975. 1 ~

### THE EXTRACTION OF LOW-CONCENTRATION URANYL NITRATE AND NITRIC ACID BY DILUTE TBP/ KEROSENE IN THE PRESENCE OF Al( NO<sub>3</sub>) <sub>3</sub>

ZHU Zhao-wu, HU Jing-xin, HE Jian-yu, ZHEN G Wei-fang

China Institute of Atomic Energy, P.O.Box 275(26) ,Beijing 102413, China

Abstract : The distribution ratios of low concentration  $UO_2(NO_3)_2$  (initial mass concentration lower than 10 g/L) and HNO<sub>3</sub> (initial concentration  $0 \sim 2 \mod/L$ ) between dilute TBP/kerosene (lower than 10 %) and aqueous solution in the presence of Al(NO<sub>3</sub>)<sub>3</sub> are determined. Based on these data, the empirical functions of extraction equilibrium concentration quotients K(U( )) and  $K(H^+)$  are founded by non-linear least square fitting method. According to these functions, D(U( )) and  $D(H^+)$  can be calculated out and they are in good agreement with observed values. The mean error of calculated D(U( )) is about 10 %; and the mean error of calculated  $D(H^+)$  is less than 5 %.

Key words: U(); Al(NO<sub>3</sub>)<sub>3</sub>; salting-out; dilute TBP/kerosene; distribution ratio