文章编号:0253-9950(2012)06-0369-05

离子强度、pH 和腐殖酸浓度对⁶³Ni(Ⅱ)在 γ-Al₂O₃上吸附的影响

刘正杰1,陈 磊1,董云会1,李月云1,胡 君2,王 平1,*

1. 山东理工大学 化工学院,山东 淄博 255049;2. 中国科学院 等离子体物理研究所,安徽 合肥 230031

摘要:采用静态批式法研究了⁶³ Ni(Π)在 γ -Al₂O₃上的吸附行为。探讨了震荡时间、pH、离子强度、 γ -Al₂O₃浓度以及腐殖酸对吸附的影响。实验结果表明:在低 pH 条件下,离子强度对⁶³ Ni(Π)的吸附影响很大, ⁶³ Ni(Π)的吸附主要是离子交换和外层表面络合作用;在高 pH 条件下,⁶³ Ni(Π)的吸附受 pH 影响较小, ⁶³ Ni(Π)的吸附主要是内层表面络合作用。溶液中的腐殖酸,在低 pH 条件下促进⁶³ Ni(Π)在 γ -Al₂O₃上的吸附,而在高 pH 条件下抑制⁶³ Ni(Π)在 γ -Al₂O₃上的吸附。

关键词:γ-Al₂O₃;吸附;⁶³Ni(Ⅱ);腐殖酸 中图分类号:TL942.1 **文献标志码**:A

Effect of Ionic Strength, Temperature and Humic Substances Concentration on the Sorption of ⁶³Ni(]]) to γ-Al₂O₃

LIU Zheng-jie¹, CHEN Lei¹, DONG Yun-hui¹, LI Yue-yun¹, HU Jun², WANG Ping^{1,*}

School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China;
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

Abstract: The sorption of ⁶³Ni([I]) on γ -Al₂O₃ was studied by using batch technique. The effect of contact time, pH, ionic strength, γ -Al₂O₃ content and humic acid on the sorption of ⁶³Ni([I]) on γ -Al₂O₃ was investigated under ambient conditions. The results suggest that the sorption of ⁶³Ni([I]) is strongly dependent on ionic strength at low pH values, and independent on it at high pH values. The sorption of ⁶³Ni([I]) at low pH is mainly dominated by ion exchange and/or outer-sphere surface complexation, whereas the sorption of ⁶³Ni([I]) at high pH is mainly dominated by inner-sphere surface complexation. The presence of humic acid enhances ⁶³Ni([I]) sorption to HA- γ -Al₂O₃ hybrids at low pH values, but reduces ⁶³Ni([I]) sorption to HA- γ -Al₂O₃ hybrids at high pH values.

Key words: γ -Al₂O₃; sorption; ⁶³Ni([]); humic acid

我国有着非常丰富的铝土资源,铝氧化物及 其水合物普遍存在于天然土壤和水体系中。在自 然环境中的各种地球化学过程中,铝氧化物通过 其固液界面上的反应影响着矿物的溶解、风化、沉

收稿日期:2012-04-11;修订日期:2012-06-11

基金项目:国家自然科学基金资助项目(21107115);山东省自然科学基金资助项目(ZR2009BM045)

作者简介:刘正杰(1988一),男,山东临沂人,硕士研究生,从事污染物治理方面的研究

^{*} 通信联系人:王 平, E-mail: hgxywp@sdut.edu.cn

淀和晶体生长等一系列反应,还控制着元素在土 壤、沉积物和水体系中的分配,从而对土壤和其它 一些天然水体系的反应起重要的调控作用^[1]。氧 化铝具有吸附性能、催化活性、高分散度、大比表 面积等特性,铝氧化物可以作为工业原料、吸附剂 和催化剂载体^[2-3]。

随着核能的发展,越来越多的放射性核素被 排放到自然环境中,这对人类的健康有着很大的 危害[4]。吸附作为一种操作简单、成本低廉的方 法已经在放射性核素处理方面得到较多的应用。 许君政等^[5]研究了 Th(Ⅳ)在凹凸棒石上的吸附, 发现Th(IV)在凹凸棒石表面的吸附主要通过内 层络合方式进行,而离子交换和外层络合作用微 弱;刘昇平等^[6]研究了北山除碳酸盐土壤对 Eu(Ⅲ)的吸附,发现 pH 对吸附影响显著,低 pH 时以离子交换和外层络合作用为主,高 pH 时内 层络合作用为主。⁶³Ni(Ⅱ)是一种重要的放射性 核素,对其在环境中的吸附行为进行研究很有必 要。国内外许多研究者对镍的吸附行为作了大量 工作[7-10]。在本工作中以 γ -Al₂O₃为吸附材料,经 对该材料表征后研究其对⁶³Ni(Ⅱ)的吸附,分析 ⁶³Ni(Π)与 γ-Al₂O₃的相互作用。

1 实验部分

1.1 试剂

实验中所用胡敏酸(HA)由甘肃甘南腐黑物 中提取;⁶³Ni由中国原子能科学研究院提供,其放 射性活度浓度为 7.4×10^9 Bq/L; γ -Al₂O₃ 经 0.1 mol/L HNO₃纯化,然后用 0.1 mol/L NaOH 洗至 pH=10,最后用蒸馏水清洗至洗涤水与蒸 馏水的电导一致为止; Ni(NO₃)₂、NaNO₃、 LiNO₃、Mg(NO₃)₂、NaCl、NaClO₄均为市购分 析纯;所用蒸馏水为二次蒸馏水。

1.2 实验仪器

VECTOR-22 型傅立叶变换红外光谱仪,美 国 PE 公司;D/max-γB 型 X 射线衍射仪,日本理 学电机公司;SZ-2 型双重纯水蒸馏器,上海沪西 分析仪器有限公司;5、1、0.1 mL 系列自动取样器, 北京青云航空仪表有限公司;AL204 型精密 pH 计 和电光分析天平(感量 0.000 1 g),上海梅特勒-托 利多仪器有限公司;高速离心机,美国 Beckman Coulter 公司;SHA-C 型水浴恒温振荡器,江苏金坛 市金城国胜实验仪器厂;Packard3100TR/AB 液体 闪烁计数器,美国 PerkinElmer 公司。

1.3 实验方法

依次向聚乙烯离心管中加入一定量的吸附剂 悬浮液、⁶³Ni(Ⅱ)离子溶液、电解质溶液等,用 NaNO₃调节离子强度,用少量的HNO₃或NaOH 调节体系的pH至所需值。然后将混合均匀的悬 浮液在水浴恒温振荡器上振荡,当吸附达到平衡 后,在 8 000 r/min下离心30 min,取一定体积上 清液,用液体闪烁计数器测量上清液中⁶³Ni(Ⅱ) 的放射性计数,从而得到⁶³Ni(Ⅱ)的浓度。HA 的影响试验中,γ-Al₂O₃先与HA平衡 24 h,再 加⁶³Ni(Ⅱ)离子溶液。

2 结果与讨论

2.1 FTIR 和 XRD 表征结果

图 1 是 γ -Al₂ O₃ 的红外光谱图。如图 1 所 示,在 3 436 cm⁻¹附近的宽峰是吸附水所对应的 伸缩振动吸收峰;1 640 cm⁻¹代表水的弯曲振动 吸收峰;1 393 cm⁻¹是 γ -Al₂ O₃中的振动吸收峰; 830 cm⁻¹和 582 cm⁻¹附近的峰可能是成对的 Al-O所对应的外层吸收峰^[11-12]。

Fig. 1 FTIR spectrum of γ -Al₂O₃ sample

图 2 为 γ -Al₂O₃的 XRD。由图 2 可知,Al₂O₃成 分较复杂,可能含有一些杂质。用标准 JCPDS 对 比,证明该样品为 γ -Al₂O₃,是由一水软铝石、一 水硬铝石、拜尔石 3 种混合相的铝氧水合物组成。

2.2 吸附时间对吸附的影响

吸附时间对⁶³Ni(Ⅱ)在 γ-Al₂O₃上的吸附性 能的影响示于图 3。从图 3 可见,⁶³Ni(Ⅱ)在 γ-Al₂O₃上的吸附在 6 h 内即可达到平衡,6 h 后随着 吸附时间的增加,吸附率保持不变。如此短的吸附 平衡时间也说明了⁶³Ni(Ⅱ)在 γ-Al₂O₃上的吸附主 要是化学吸附而不是物理吸附^[7]。以下实验吸附 时间均至少采用 24 h,确保吸附达到完全平衡。

图 2 γ -Al₂O₃的 XRD Fig. 2 XRD pattern of γ -Al₂O₃ sample

图 3 吸附时间对⁶³Ni(Ⅱ)在 γ-Al₂O₃上吸附的影响 Fig. 3 Effect of contact time on ⁶³Ni(Ⅱ) sorption to γ-Al₂O₃ pH=6.5±0.1,t=(30±1)℃,m/V=0.5g/L,

 c_0 (⁶³Ni([]))=1.69×10⁻⁴ mol/L, c_0 (NaNO₃) =0.01 mol/L

准二阶动力学方程是描述吸附动力学的一个 模型方程,本工作采用了准二阶动力学方程对吸 附动力学数据进行分析,即:

 $t/q_t = 1/(k'q_e^2) + t/q_e$ (1)

式中:k'为动力学方程常数, $g/(mg \cdot h)$;t为吸附 时间,h; q_t 和 q_e 分别为在t和吸附达到平衡后所 吸附的⁶³Ni(Π)的量,mg/g(干重)。准二阶动力 学方程的线性拟合曲线也示于图 3 中,相关系数 r=0.9999,最大吸附量 q_e 为 8.74 mg/g,动力学 方程常数k'为 0.85 g/(mg \cdot h),实验结果与理论 计算结果吻合很好。

2.3 γ-Al₂O₃浓度的影响

 γ -Al₂O₃浓度对⁶³Ni(II)吸附的影响示于图 4。由图 4 看出,液相中⁶³Ni(II)的吸附率随 γ -Al₂O₃用量的增加而增大。这可以解释为随着 γ -Al₂O₃用量的增加, γ -Al₂O₃所提供的可吸附位 总量增加,因此,更多的表面吸附位能与⁶³Ni(II) 形成络合物。⁶³Ni(II)在固液两相的分配系数 K_d 却随着 γ -Al₂O₃用量的增加而略减小。考虑到吸 附在 γ -Al₂O₃上的⁶³Ni(II)的浓度以及离心后依 然存在于溶液中的⁶³ Ni(II)的浓度,使用分配系数 K_a 来评估⁶³ Ni(II)在 γ -Al₂O₃上的吸附。分配系数由下式计算得到:

$$K_{\rm d} = \frac{c_{\rm o} - c_{\rm e}}{c_{\rm e}} \cdot \frac{V}{m} \tag{2}$$

其中: $c_0 \in e^{s_3}$ Ni(II)的初始浓度, $c_e \in e^{s_3}$ Ni(II)的平 衡浓度,V 是悬浮液的体积, $m \in \gamma$ -Al₂O₃的质 量。分配系数 K_a 一般不受吸附剂含量的影响,而 是代表其吸附能力的一个指标。从图 4 可以看 到,随着 γ -Al₂O₃浓度增大,分配系数略微减小。 这可能是因为随着 γ -Al₂O₃用量的增加, γ -Al₂O₃ 颗粒之间的相互作用增强,导致了 γ -Al₂O₃上的有 效位利用率降低,从而使得^{s3}Ni(II)在固液两相 的分配系数降低^[7]。重金属离子在固液两相的分 配系数 K_a 与吸附剂浓度的关系比较复杂,随金属 离子的种类和吸附剂的不同而不同。

图 4 体系中 γ -Al₂O₃浓度对⁶³Ni([])吸附的影响 Fig. 4 Effect of solid content on ⁶³Ni([]) sorption to γ -Al₂O₃ $_{pH=6.5\pm0.1,t=(30\pm1)$ ℃,

 c_0 (⁶³Ni([]))=1.69×10⁻⁴ mol/L, c_0 (NaNO₃)= 0.01 mol/L

2.4 pH 和离子强度的影响

图 5 所示的是不同 pH 值下离子强度对 γ -Al₂O₃吸附⁶³Ni(I)的影响。从图 5 可以看出,吸 附受 pH 影响明显。 γ -Al₂O₃吸附⁶³Ni(I)的曲 线可分为 3 部分:(1)在 3.0<pH<6.5 时吸附 率从 5%缓慢增加到 30%;(2) pH=6.5~9.0 吸 附率从 30% 迅速增至 99%;(3) pH>9.0,吸附率 保持在最大值 99%。在不同的 pH 时,镍的化学形 态有Ni²⁺、Ni (OH)⁺、Ni (OH)₂、和 Ni (OH)^{-[7]}。 pH<9.0,Ni²⁺是主要的化学形态和吸附形式。因 此,在低 pH 时,部分 Ni²⁺和 H⁺发生竞争吸附导 致 Ni²⁺吸附较低。此外,由于质子化反应, γ -Al₂O₃ 的表面随着 pH 的增加而带正电,这导致了 Ni²⁺和 γ -Al₂O₃表面的静电反应^[13]。

2.5 不同电解质离子对吸附的影响

不同 pH 值下 Li⁺、Na⁺和 Mg²⁺ 对 γ-Al₂O₃

吸附⁶³Ni(II)的影响示于图 6(a)。不同阳离子对 ⁶³Ni(II)在 γ -Al₂O₃上的吸附率有影响,特别是在 低 pH 值范围内。从图 6(a)可以看出,当 pH<9 时,同一 pH 值下,阳离子对⁶³Ni(II)吸附的影响 顺序是 Li⁺<Na⁺<Mg²⁺,表明体系中的阳离子 会改变 γ -Al₂O₃的表面性质,从而影响了 γ -Al₂O₃ 对金属离子的吸附能力。同一 pH 值下⁶³Ni(II)吸附 量在 Mg²⁺离子中最小,在 Li⁺离子中最大,这一顺 序和它们的水合离子半径大小一致: $R(Mg^{2+}) < R(Na^+) < R(Li^+)$ 。⁶³Ni(II)在 γ -Al₂O₃上的吸附可看 成是⁶³Ni([])与Li⁺/Na⁺/Mg²⁺在 γ -Al₂O₃表面 上的竞争吸附。Mg²⁺离子的水合半径是3种离 子当中最小的,因此相对于另外2种离子来说, Mg²⁺离子对吸附的影响也是最明显的。但总的 说来,单价碱金属离子对 γ -Al₂O₃吸附二价金属 离子的影响还是很小的。仅在 pH=2~9时, 3种阳离子对吸附有着一定的影响。

不同 pH 值下 ClO₄⁻、NO₃⁻和 Cl⁻对 γ-Al₂O₃ 吸附⁶³Ni(]])的影响示于图 6(b)。阴离子对 Ni⁺ 吸附的影响主要是在低 pH 值范围内。可以看 出,在 pH<9.0时,同一 pH 值下,γ-Al₂O₃对⁶³Ni(]]) 的吸附率大小顺序为 ClO₄⁻ >NO₃⁻ >Cl⁻。造成 该现象的可能原因如下:(1) NO₃⁻和 Cl⁻可和 Ni(]])形成可溶解的化合物(例如 NiCl⁺和 NiNO₃⁺),而 ClO₄⁻却不能;(2) 相对于 ClO₄⁻和 NO₃⁻,Cl⁻更易在 γ-Al₂O₃表面吸附,这可以改变 γ-Al₂O₃的表面结构并且减少可用的结合位点; (3)无机酸根离子半径的大小顺序为 $R(Cl^-) < R(NO_3^-) < R(ClO_4^-)$,阴离子的存在改变了 γ-Al₂O₃表面的电荷状态,随着无机酸根离子半径 的减小,无机酸根离子可能占据了更多表面吸 附位,从而降低了吸附^[11,14]。

图 6 外加离子对 γ-Al₂O₃吸附⁶³Ni(Ⅱ)的影响 Fig. 6 Effect of foreign ions and pH on ⁶³Ni(Ⅱ) sorption to γ-Al₂O₃ t=(30±1) ℃, m/V=0.5 g/L, c₀(⁶³Ni(Ⅱ))=1.69×10⁻⁴ mol/L (a):●----NaNO₃,■----Mg(NO₃)₂,▲----LiNO₃;(b):●----NaClO₄,■----NaCl,▲----NaNO₃

2.6 HA的影响

 $pH = 5^{63} Ni(II) 在 HA 覆盖的 γ-Al₂O₃上的$ 吸附关系示于图 7。从图 7 可看出, pH=3~9时,在 HA 存在下,其对⁶³ Ni(II)在 γ-Al₂O₃上的吸附有促进作用;而在 pH>9,可看到 HA 对⁶³ Ni(II)的吸附有抑制作用。Yang 等^[15]通过研究发现在pH=3~10时 HA 带负电,这一结果与以前的酸碱滴定结果一致^[16]。因此,低 pH 下带负电荷的HA 很容易吸附到 γ-Al₂O₃表面上并且离子与γ-Al₂O₃表面吸附的 HA 之间相互作用强于与 γ-Al₂O₃的作用。在高 pH 下, γ-Al₂O₃的表面由 于 pH 值的增加导致表面负电荷增加,从而使得 带负电荷的 HA 在 γ-Al₂O₃上的附着能力由于静 电排斥作用而有所减弱,被排斥的 HA 在溶液中 形成了稳定的 HA-Ni 络合物,因而减少了在 γ-Al₂O₃上的吸附^[17-18]。

3 结 论

通过以上实验结果,可以得到以下结论: (1) 63 Ni([]) 在 γ -Al₂O₃上的吸附 6 h 即可达到

图 7 FA 对 γ -Al₂O₃ 吸附⁶³ Ni([])的影响 Fig. 7 Effect of HA on ⁶³ Ni([]) sorption to γ -Al₂O₃ as a function of pH ρ_0 (HA) = 10 mg/L, $t = (30 \pm 1)$ °C, m/V = 0.5 g/L, c_0 (⁶³ Ni([])) = 1.69×10⁻⁴ mol/L, c_0 (NaNO₃) = 0.01 mol/L \bullet ----HA-Al₂O₃, \blacksquare -----Al₂O₃

平衡,吸附速率服从准二阶吸附动力学速率方程;

(2) pH 对⁶³Ni(Ⅱ)在 γ-Al₂O₃上的吸附有着 强烈的影响:在低 pH 下,离子强度对⁶³Ni(Ⅱ)的 吸附有着较大影响,吸附机理主要为离子交换及 外层表面络合作用;在高 pH 下,吸附机理主要是 内层表面络合作用;

(3) 在低 pH 下,背景离子对吸附有着较大 影响,而高 pH 下,无明显影响;

(4) 溶液中的腐殖酸,在低 pH 时对吸附有 促进作用,而在高 pH 时有抑制作用。

参考文献:

- [1] 王东升,杨晓芳,孙中溪. 铝氧化物 2 水界面化学及 其在水处理中的应用[J]. 环境科学学报,2007,27
 (3):353-362.
- [2] Umdu E S, Tuncer M, Seker E. Transesterification of Nannochloropsis Oculata Microalga's Lipid to Biodiesel on Al₂O₃ Supported CaO and MgO Catalysts [J]. Bioresour Technol, 2009, 100: 2 828-2 831.
- [3] Sabari G V, Sarathi R, Chakravarthy S R, et al. Studies on Production and Characterization of Nano-Al₂O₃ Powder Using Wire Explosion Technique[J]. Mater Lett, 2004, 58: 1 047-1 050.
- [4] Tan X L, Hu J, Zhou X, et al. Characterization of Lin'an Montmorillonite and Its Application in the Removal of Ni²⁺ From Aqueous Solutions[J]. Radiochim Acta, 2008, 96: 487-495.
- [5] 徐君政,范桥辉,白洪斌,等.离子强度、温度、pH和 腐殖酸浓度对Th(W)在凹凸棒石上吸附的影响[J]. 核化学与放射化学,2009,31(3):179-185.
- [6] 刘昇平,范桥辉,潘多强,等.离子强度、pH和HA 对Eu(Ⅲ)在北山除碳酸盐土壤上吸附的影响[J].

核化学与放射化学,2012,34(1):46-50.

- Zhang H, Yu X J, Chen L, et al. Investigation of Radionuclide ⁶³ Ni([]) Sorption on ZSM-5 Zeolite[J]. J Radioanal Nucl Chem, 2010, 286: 249-258.
- [8] Scheidegger A M, Strawn D G, Lamble G M. The Kinetics of Mixed Ni-Al Hydroxide Formation on Clay and Aluminum Oxide Minerals: A Time-Resolved XAFS Study [J]. Geochim Cosmochim Acta, 1988, 62(13): 2 233-2 245.
- Safdar M, Mustafa S, Naeem A. Effect of Sorption on Co([]), Cu([]), Ni([]) and Zn([]) Ions Precipitation[J]. Desalination, 2011, 266(1-3): 171-174.
- [10] Bradbury M H, Baeyens B. Sorption Modelling on Illite Part I: Titration Measurements and the Sorption of Ni, Co, Eu and Sn[J]. Geochim Cosmochim Acta, 2009, 73(4): 990-1003.
- [11] Guo Z Q, Zhao D L, Li Y, et al. Solution Chemistry Effects on Sorption Behavior of ¹⁰⁹Cd([]) on Ca-Montmorillonite[J]. J Radioanal Nucl Chem, 2011, 288: 829-837.
- [12] Zhao D L, Feng S J, Chen C L, et al. Adsorption of Thorium (IV) on MX-80 Bentonite: Effect of pH, Ionic Strength and Temperature[J]. Appl Clay Sci, 2008, 41: 17-23.
- [13] Yang X, Yang S B, Yang S T, et al. Effect of pH, Ionic Strength and Temperature on Sorption of Pb([]) on NKF-6 Zeolite Studied by Batch Technique [J]. Chem Eng J, 2011, 168: 86-93.
- [14] Fan Q H, Shao D D, Hu J, et al. Comparison of Ni²⁺ Sorption to Bare and ACT-Graft Attapulgites: Effect of pH, Temperature and Foreign Ions[J]. Surf Sci, 2008, 602: 778-785.
- [15] Yang K, Xing B. Adsorption of Fulvic Acid by Carbon Nanotubes From Water [J]. Environ Pollut, 2009, 157: 1 095-1 100.
- [16] Tan X L, Wang X K, Geckeis H, et al. Sorption of Eu(Ⅲ) on Humic Acid or Fulvic Acid Bound to Alumina Studied by SEM-EDS, XPS, TRLFS and Batch Techniques[J]. Environ Sci Technol, 2008, 42: 6 532-6 537.
- [17] 王祥科,郑善良. 荧光衰减光谱法研究 Eu(Ⅱ)在氧 化铝表面的化学形态[J]. 核化学与放射化学,2005, 27(2):108-122.
- [18] Tan X L, Fang M, Chen C L, et al. Counterion Effects of Nickel and Sodium Dodecylbenzene Sulfonate Adsorption to Multiwalled Carbon Nanotubes in Aqueous Solution[J]. Carbon, 2008, 46: 1 741-1 750.