• 右
  • 左
SHI Xu-dong, WANG Xiao, SHEN Yi-ming, SUN Yu-lin, LIANG Ji-xin, CHEN Yu-qing, SHEN Lang-tao. Radiolabeling of SPION-dopa-PEG-DOTA/RGD With 64Cu and Biodistribution of the Radiolabel[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 250-256. DOI: 10.7538/hhx.2015.37.04.0250
Citation: SHI Xu-dong, WANG Xiao, SHEN Yi-ming, SUN Yu-lin, LIANG Ji-xin, CHEN Yu-qing, SHEN Lang-tao. Radiolabeling of SPION-dopa-PEG-DOTA/RGD With 64Cu and Biodistribution of the Radiolabel[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 250-256. DOI: 10.7538/hhx.2015.37.04.0250

Radiolabeling of SPION-dopa-PEG-DOTA/RGD With 64Cu and Biodistribution of the Radiolabel

More Information
  • To investigate the construction and purification of the superparamagnetic iron oxide nanoparticles radiolabeled with 64Cu and its biodistribution in mice, 64Cu-SPION-dopa-PEG-DOTA/RGD was prepared. To obtain a fair good radiolabeling yield and a high radiochemical purity, the labeling conditions and purification method for 64Cu-SPION-dopa-PEG-DOTA/RGD were optimized.Besides, stability in vitro and biodistribution studies in mice for 64Cu-SPION-dopa-PEG-DOTA/RGD were also studied.The labeling conditions were optimized and the radiolabeling yield is 63%. The radiochemical purity of 64Cu-SPION-dopa-PEG-DOTA/RGD is more than 95% after purification. It is stable enough in the systems of PBS and HSA, respectively, within 12 h at room temperature. The octanol-water partition coefficients of 64Cu-SPION-dopa-PEG-DOTA/RGD (lg P) is -1.27. 64Cu-SPION-dopa-PEG-DOTA/RGD exhibites a relatively high uptake in liver and kindney and shows rapid clearance from blood based on the biodistribution studies.SPION-dopa-PEG-DOTA/RGD was radiolabeled with 64Cu and purified successfully. 64Cu-SPION-dopa-PEG-DOTA/RGD shows high stability in vitro. Biodistribution in vivo reveals the main metabolic pathway of this radiolabel, which can be further investigated acting as a PET/MRI dual modal imaging agent.
  • [1]
    Reddy L H, Arias J L, Nicolas J, et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chem Rev, 2012, 112(11): 5818-5878.
    [2]
    Rafael T, Richard T, Philip J, et al. Synthesis of 64CuⅡ-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent[J]. Angew Chem Int Ed, 2011, 50(24): 5509-5513.
    [3]
    Xie J, Chen K, Huang J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles[J]. Biomaterials, 2010, 31(22): 3016-3022.
    [4]
    Choi J, Park J, Cheon J, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging[J]. Angew Chem Int Ed, 2008, 47(33): 6259-6262.
    [5]
    Shi X D, Shen L T. The design and synthesis of potential PET/MRI dual-modal imaging agents based on MFe2O4 (M=Fe, Mn) nanoparticles[J]. J Nucl Med, 2014, 55(Suppl.): 1026.
    [6]
    史旭东,沈浪涛.用于PET/MRI双模式显像剂的磁性氧化铁纳米粒子的合成和性质初步研究[G]∥中国原子能科学研究院年报.北京:中国原子能科学研究院,2012:179-180.
    [7]
    Panizzi P, Nahrendorf M, Weissleder R, et al. In vivo detection of staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation[J]. Nat Med, 2011, 17(9): 1142-1146.
    [8]
    Joanne E M, James R B, David M C. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET[J]. J Nucl Med, 2014, 55(1):23-29.
    [9]
    Elena R, Réjean L, Brigitte G, et al. 68Ga/DOTA and 64Cu/NOTA-phthalocyanine conjugates as fluorescent/PET bimodal imaging probes[J]. Bioconjugate Chem, 2013, 24(9): 1624-1633.
    [10]
    Benjamin R, David L, Angelique Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging[J]. Bioconjugate Chem, 2008, 19(7): 1496-1504.
    [11]
    Yang M, Cheng K, Cheng Z, et al. Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J]. Biomaterials, 2013, 34(11): 2796-2806.
    [12]
    Lee H Y, Li Z B, Chen X Y, et al. PET/MRI dual modality tumor imaging using arginine glycine aspartic (RGD) conjugated radiolabeled iron oxide nanoparticles[J]. J Nucl Med, 2008, 49 (8): 1371-1379.
    [13]
    Fukukawa K, Rossin R, Hagooly A, et al. Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications[J].Biomacromolecules, 2008, 9(4): 1329-1339.
    [14]
    Pressly E D, Rossin R, Hagooly A, et al. Structural effects on the biodistribution and positron emission tomography(PET) imaging of well defined64Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers[J].Biomacromolecules, 2007, 8(10): 3126-3134.
    [15]
    Natarajan A, Gruettner C, Ivkov R, et al. Nanoferrite particle based radioimmuno nanoparticles: binding affinity and in vivo pharmacokinetics[J]. Bioconjugate Chem, 2008, 19(6): 1211-1218.
    [16]
    Glaus C, Rossin R, Bao G. In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual modality PET/MR imaging agent[J]. Bioconjugate Chem, 2010, 21(4): 715-722.
    [17]
    Laurent S, Forge D, Muller R. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem Rev, 2008, 108(6): 2064-2110.

Catalog

    Article views (1168) PDF downloads (4351) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return