Citation: | LIU Hai-wang, YANG Tao, CHEN Qing-de, SHEN Xing-hai. Extraction Behaviors of Ionic Liquid Systems and Application Perspectives in Reprocessing of Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 286-309. DOI: 10.7538/hhx.2015.37.05.0286 |
[1] |
Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imper Sci St Petersbourg, 1914, 8: 405-422.
|
[2] |
Hurley F H. Electrodeposition of aluminum: US, 2446331[P]. 1948.
|
[3] |
Sun X Q, Luo H M, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle[J]. Chem Rev, 2012, 112(4): 2100-2128.
|
[4] |
Zhao H, Xia S Q, Ma P S. Use of ionic liquids as “green” solvents for extractions[J]. J Chem Technol Biotechnol, 2005, 80(10): 1089-1096.
|
[5] |
Kubota F, Goto M. Application of ionic liquids to solvent extraction[J]. Solvent Extr Res Dev-Jap, 2006, 13: 23-36.
|
[6] |
Li Z J, Chang J, Shan H X, et al. Advance of room temperature ionic liquid as solvent for extraction and separation[J]. Rev Anal Chem, 2007, 26(2): 109-153.
|
[7] |
Mudring A V, Tang S F. Ionic liquids for lanthanide and actinide chemistry[J]. Eur J Inorg Chem, 2010, 18: 2569-2581.
|
[8] |
Baba Y, Kubota F, Kamiya N, et al. Recent advances in extraction and separation of rare-earth metals using ionic liquids[J]. J Chem Eng Jpn, 2011, 44(10): 679-685.
|
[9] |
Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding[J]. Anal Bioanal Chem, 2011, 400(6): 1555-1566.
|
[10] |
Kubota F, Baba Y, Goto M. Application of ionic liquids for the separation of rare earth metals[J]. Solvent Extr Res Dev-Jpn, 2012, 19: 17-28.
|
[11] |
Liu Y H, Chen J, Li D Q. Application and perspective of ionic liquids on rare earths green separation[J]. Sep Sci Technol, 2012, 47(2): 223-232.
|
[12] |
Rao P R V, Venkatesan K A, Rout A, et al. Potential applications of room temperature ionic liquids for fission products and actinide separation[J]. Sep Sci Technol, 2012, 47(2): 204-222.
|
[13] |
沈兴海,徐超,刘新起,等.离子液体在金属离子萃取分离中的应用[J].核化学与放射化学,2006,28(3):129-138.
|
[14] |
徐超,沈兴海,陈庆德,等.冠醚-离子液体体系对水相中锶离子的萃取研究[J].中国科学B辑:化学,2009,52(11):1402-1408.
|
[15] |
Xu C, Yuan L Y, Shen X H, et al. Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect[J]. Dalton Trans, 2010, 39(16): 3897-3902.
|
[16] |
沈兴海,张京晶,高嵩,等.典型超分子体系在放射化学领域的应用[J].化学进展,2011,23(7):1386-1399.
|
[17] |
Sun T X, Wang Z M, Shen X H. Crystallization of cesium complex containing bis(2-propyloxy)calix[4]crown-6 and bis[(trifluoromethyl)sulfonyl]imide[J]. Inorg Chim Acta, 2012, 390: 8-11.
|
[18] |
Fu J, Chen Q D, Sun T X, et al. Extraction of Th(Ⅳ) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping[J]. Sep Purif Technol, 2013, 119: 66-71.
|
[19] |
Gao S, Sun T X, Chen Q D, et al. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids[J]. J Hazard Mater, 2013, 263: 562-568.
|
[20] |
Sun T X, Shen X H, Chen Q D. A further understanding of the cation exchange mechanism for the extraction of Sr2+ and Cs+ by ionic liquid[J]. Sci China-Chem, 2013, 56(6): 782-788.
|
[21] |
Sun T X, Shen X H, Chen Q D, et al. Identification of F- and SO2-4 as the radiolytic products of the ionic liquid C4mimNTf2 and their effect on the extraction of UO2+2[J]. Radiat Phys Chem, 2013, 83: 74-78.
|
[22] |
吴京珂,沈兴海,陈庆德.CMPO-离子液体萃取分离铀(Ⅵ)体系的电化学性质[J].物理化学学报,2013,29(8):1705-1711.
|
[23] |
孙涛祥,沈兴海,陈庆德.CMPO和TBP在离子液体中选择性萃取水溶液中铀酰离子的研究[J].物理化学学报,2015,31(Suppl):32-38.
|
[24] |
Fu J, Chen Q, Shen X. Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide[J]. Sci China-Chem, 2015, 58(3): 545-550.
|
[25] |
刘海望,沈兴海,陈庆德.三丁基氧化膦-离子液体体系萃取UO2(NO3)2的机理和选择性[J].物理化学学报,2015,31(5):843-851.
|
[26] |
Yuan L Y, Xu C, Peng J, et al. Identification of the radiolytic product of hydrophonic ionic liquid [C4mim][NTf2] during removal of Sr2+ from aqueous solution[J]. Dalton Trans, 2009, 38: 7873-7875.
|
[27] |
孙涛祥.离子液体体系萃取Sr、Cs、U、Tc等元素的研究[D].北京:北京大学,2013.
|
[28] |
刘海望.离子液体体系对U 和Eu 的萃取及其机理研究[D].北京:北京大学,2015.
|
[29] |
王硕珏,敖银勇,周翰洋,等.离子液体的辐射效应研究进展[J].物理化学学报,2014,30(9):1597-1604.
|
[30] |
袁立永,彭静,翟茂林.咪唑离子液体及其萃取体系的辐射效应研究[J].化学进展,2011(7):1469-1477.
|
[31] |
Visser A E, Jensen M P, Laszak I, et al. Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation[J]. Inorg Chem, 2003, 42(7): 2197-2199.
|
[32] |
Visser A E, Rogers R D. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry[J]. J Solid State Chem, 2003, 171(1): 109-113.
|
[33] |
Giridhar P, Venkatesan K A, Srinivasan T G, et al. Extraction of uranium(Ⅵ) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent[J]. J Radioanal Nucl Chem, 2005, 265(1): 31-38.
|
[34] |
Nakashima K, Kubota F, Maruyama T, et al. Ionic liquids as a novel solvent for lanthanide extraction[J]. Anal Sci, 2003, 19(8): 1097-1098.
|
[35] |
Nakashima K, Kubota F, Maruyama T, et al. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes[J]. Ind Eng Chem Res, 2005, 44(12): 4368-4372.
|
[36] |
Dietz M L, Stepinski D C. Anion concentration dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids[J]. Talanta, 2008, 75(2): 598-603.
|
[37] |
Giridhar P, Venkatesan K A, Subramaniam S, et al. Extraction of uranium(Ⅵ) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase[J]. J Alloys Compd, 2008, 448(1): 104-108.
|
[38] |
Lohithakshan K V, Aggarwal S K. Solvent extraction studies of Pu(Ⅳ) with CMPO in 1-octyl 3-methyl imidazolium hexa fluorophosphate (C8mimPF6) room temperature ionic liquid(RTIL)[J]. Radiochim Acta, 2008, 96(2): 93-97.
|
[39] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Extraction of americium(Ⅲ) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent[J]. Radiochim Acta, 2009, 97(12): 719-725.
|
[40] |
Wang J S, Sheaff C N, Yoon B, et al. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction[J]. Chem Eur J, 2009, 15(17): 4458-4463.
|
[41] |
Billard I, Ouadi A, Jobin E, et al. Understanding the extraction mechanism in ionic liquids: UO2+2/HNO3/TBP/C4mimTf2N as a case study[J]. Solvent Extr Ion Exch, 2011, 29(4): 577-601.
|
[42] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Room temperature ionic liquid diluent for the extraction of Eu(Ⅲ) using TRUEX extractants[J]. J Radioanal Nucl Chem, 2011, 290(1): 215-219.
|
[43] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Extraction and third phase formation behavior of Eu(Ⅲ) in CMPO-TBP extractants present in room temperature ionic liquid[J]. Sep Purif Technol, 2011, 76(3): 238-243.
|
[44] |
黄磊,黄卫,付海英,等.CMPO-离子液体体系对Ce3+的萃取[J].无机化学学报,2012,28(4):669-673.
|
[45] |
Shimojo K, Kurahashi K, Naganawa H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids[J]. Dalton Trans, 2008, 37: 5083-5088.
|
[46] |
Kubota F, Shimobori Y, Baba Y, et al. Application of ionic liquids to extraction separation of rare earth metals with an effective diglycol amic acid extractant[J]. J Chem Eng Jpn, 2011, 44(5): 307-312.
|
[47] |
Shen Y L, Tan X W, Wang L, et al. Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide[J]. Sep Purif Technol, 2011, 78(3): 298-302.
|
[48] |
Shen Y L, Wang S F, Zhu L, et al. Extraction of Th(Ⅳ) from an HNO3 solution by diglycolamide in ionic liquids[J]. Ind Eng Chem Res, 2011, 50(24): 13990-13996.
|
[49] |
Bonnaffe-Moity M, Ouadi A, Mazan V, et al. Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid[J]. Dalton Trans, 2012, 41(25): 7526-7536.
|
[50] |
Panja S, Mohapatra P K, Tripathi S C, et al. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction[J]. Sep Purif Technol, 2012, 96: 289-295.
|
[51] |
Prathibha T, Venkatesan K A, Selvan B R, et al. Anomalous extraction behavior of americium(Ⅲ) in some diglycolamide isomers present in ionic liquid medium[J]. Radiochim Acta, 2012, 100(12): 907-913.
|
[52] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Liquid-liquid extraction of Pu(Ⅳ), U(Ⅵ) and Am(Ⅲ) using malonamide in room temperature ionic liquid as diluent[J]. J Hazard Mater, 2012, 221: 62-67.
|
[53] |
Sengupta A, Mohapatra P K, Iqbal M, et al. Extraction of Am(Ⅲ) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a “green” approach for radioactive waste processing[J]. RSC Adv, 2012, 2(19): 7492-7500.
|
[54] |
Patil A B, Pathak P, Shinde V S, et al. Efficient solvent system containing malonamides in room temperature ionic liquids: actinide extraction, fluorescence and radiolytic degradation studies[J]. Dalton Trans, 2013, 42(5): 1519-1529.
|
[55] |
Yang F, Kubota F, Baba Y, et al. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system[J]. J Hazard Mater, 2013, 254: 79-88.
|
[56] |
Sengupta A, Mohapatra P K, Iqbal M, et al. Solvent systems containing diglycolamide-functionalised calix[4]arenes in room temperature ionic liquid for metal ion extraction: studies with simulated high-level wastes[J]. Supramol Chem, 2014, 26(7): 612-619.
|
[57] |
Sun M, Yuan L Y, Tan N, et al. Solvent extraction of uranium(Ⅵ) by a dipicolinamide using a room-temperature ionic liquid[J]. Radiochim Acta, 2014, 102(1): 87-92.
|
[58] |
Rout A, Karmakar S, Venkatesan K A, et al. Room temperature ionic liquid diluent for the mutual separation of europium(Ⅲ) from americium(Ⅲ)[J]. Sep Purif Technol, 2011, 81(2): 109-115.
|
[59] |
Pathak P N, Prabhu D R, Kumari N, et al. Studies on the extraction of actinides using a solvent containing D2EHiBA in room temperature ionic liquids: unusual extraction of the tetravalent ions[J]. Sep Sci Technol, 2015, 50(3): 373-379.
|
[60] |
Dai S, Ju Y H, Barnes C E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. J Chem Soc-Dalton Trans, 1999, 8: 1201-1202.
|
[61] |
Visser A E, Swatloski R P, Reichert W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Ind Eng Chem Res, 2000, 39(10): 3596-3604.
|
[62] |
Chun S, Dzyuba S V, Bartsch R A. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether[J]. Anal Chem, 2001, 73(15): 3737-3741.
|
[63] |
Dietz M L, Dzielawa J A. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the “greenness” of ionic liquids as diluents in liquid-liquid extraction[J]. Chem Commun, 2001, 20: 2124-2125.
|
[64] |
Jensen M P, Dzielawa J A, Rickert P, et al. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid[J]. J Am Chem Soc, 2002, 124(36): 10664-10665.
|
[65] |
Dietz M L, Dzielawa J A, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem, 2003, 5(6): 682-685.
|
[66] |
Luo H M, Dai S, Bonnesen P V. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers[J]. Anal Chem, 2004, 76(10): 2773-2779.
|
[67] |
Luo H M, Dai S, Bonnesen P V, et al. Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids[J]. Anal Chem, 2004, 76(11): 3078-3083.
|
[68] |
Dietz M L, Stepinski D C. A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids(RTILs): implications for the “greenness” of RTILs as extraction solvents[J]. Green Chem, 2005, 7(10): 747-750.
|
[69] |
Stepinski D C, Jensen M P, Dzielawa J A, et al. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids[J]. Green Chem, 2005, 7(3): 151-158.
|
[70] |
Vayssiere P, Chaumont A, Wipff G. Cation extraction by 18-crown-6 to a room-temperature ionic liquid: the effect of solvent humidity investigated by molecular dynamics simulations[J]. Phys Chem Chem Phys, 2005, 7(1): 124-135.
|
[71] |
Heitzman H, Young B A, Rausch D J, et al. Fluorous ionic liquids as solvents for the liquid-liquid extraction of metal ions by macrocyclic polyethers[J]. Talanta, 2006, 69(2): 527-531.
|
[72] |
Luo H, Dai S, Bonnesen P V, et al. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6[J]. Solvent Extr Ion Exch, 2006, 24(1): 19-31.
|
[73] |
Nishi N, Murakami H, Imakura S, et al. Facilitated transfer of alkali-metal cations by dibenzo-18-crown-6 across the electrochemically polarized interface between an aqueous solution and a hydrophobic room-temperature ionic -liquid[J]. Anal Chem, 2006, 78(16): 5805-5812.
|
[74] |
Park S H, Demberelnyamba D, Jang S H, et al. Ionic liquid-type crown ether as a novel medium for a liquid/liquid extraction of radioactive metal ion Sr(85)2+[J]. Chem Lett, 2006, 35(9): 1024-1025.
|
[75] |
Dietz M L, Jakab S, Yamato K, et al. Stereochemical effects on the mode of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem, 2008, 10(2): 174-176.
|
[76] |
Hirayama N, Okamura H, Kidani K, et al. Ionic liquid synergistic cation-exchange system for the selective extraction of lanthanum(Ⅲ) using 2-thenoyltrifluoroacetone and 18-crown-6[J]. Anal Sci, 2008, 24(6): 697-699.
|
[77] |
Shimojo K, Okamura H, Hirayama N, et al. Cooperative intramolecular interaction of diazacrown ether bearing beta-diketone fragments on an ionic liquid extraction system[J]. Dalton Trans, 2009, 25: 4850-4852.
|
[78] |
Vendilo A G, Djigailo D I, Smirnova S V, et al. 18-crown-6 and dibenzo-18-crown-6 assisted extraction of cesium from water into room temperature ionic liquids and its correlation with stability constants for cesium complexes[J]. Molecules, 2009, 14(12): 5001-5016.
|
[79] |
Stepinski D C, Vandegrift G F, Shkrob I A, et al. Extraction of tetra-oxo anions into a hydrophobic, ionic liquid-based solvent without concomitant ion exchange[J]. Ind Eng Chem Res, 2010, 49(12): 5863-5868.
|
[80] |
Ansari S A, Mohapatra P K, Raut D R, et al. Extraction of caesium(Ⅰ) from HNO3 medium using room temperature ionic liquid containing calix[4] crown ligands as the selective extractants[J]. Radiochim Acta, 2011, 99(11): 713-717.
|
[81] |
Turanov A N, Karandashev V K, Baulin V E. Extraction of lanthanides(Ⅲ) with N, N′-bis(diphenylphosphinyl-methylcarbonyl)diaza-18-crown-6 in the presence of ionic liquids[J]. Solvent Extr Ion Exch, 2012, 30(3): 244-261.
|
[82] |
Turanov A N, Karandashev V K, Baulin V E. Extraction of rare earth elements with phosphoryl-containing lariat crown ether in the presence of ionic liquids[J]. Russ J Inorg Chem, 2012, 57(2): 292-296.
|
[83] |
Jensen M P, Neuefeind J, Beitz J V, et al. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange[J]. J Am Chem Soc, 2003, 125(50): 15466-15473.
|
[84] |
Cocalia V A, Jensen M P, Holbrey J D, et al. Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents[J]. Dalton Trans, 2005, 11: 1966-1971.
|
[85] |
Mekki S, Wai C M, Billard I, et al. Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction[J]. Chem Eur J, 2006, 12(6): 1760-1766.
|
[86] |
Shimojo K, Naganawa H, Kubota F, et al. Solvent extraction of lanthanides into an ionic liquid containing N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine[J]. Chem Lett, 2006, 35(5): 484-485.
|
[87] |
Sieffert N, Wipff G. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces[J]. J Phys Chem B, 2006, 110(39): 19497-19506.
|
[88] |
Kozonoi N, Ikeda Y. Extraction mechanism of metal ion from aqueous solution to the hydrophobic ionic liquid, 1-butyl-3-methylimidazolium nonafluorobutanesulfonate[J]. Monatsh Chem, 2007, 138(11): 1145-1151.
|
[89] |
Sun X Q, Wu D B, Chen J, et al. Separation of scandium(Ⅲ) from lanthanides(Ⅲ) with room temperature ionic liquid based extraction containing Cyanex 925[J]. J Chem Technol Biotechnol, 2007, 82(3): 267-272.
|
[90] |
Kubota F, Koyanagi Y, Nakashima K, et al. Extraction of lanthanide ions with an organophosphorous extractant into ionic liquids[J]. Solvent Extr Res Dev-Jpn, 2008, 15: 81-87.
|
[91] |
Sun X Q, Peng B, Chen J, et al. An effective method for enhancing metal-ions′ selectivity of ionic liquid-based extraction system: adding water-soluble complexing agent[J]. Talanta, 2008, 74(4): 1071-1074.
|
[92] |
Turanov A N, Karandashev V K, Baulin V E. Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions[J]. Russ J Inorg Chem, 2008, 53(6): 970-975.
|
[93] |
Zuo Y, Chen J, Li D Q. Reversed micellar solubilization extraction and separation of thorium(Ⅳ) from rare earth(Ⅲ) by primary amine N1923 in ionic liquid[J]. Sep Purif Technol, 2008, 63(3): 684-690.
|
[94] |
Srncik M, Kogelnig D, Stojanovic A, et al. Uranium extraction from aqueous solutions by ionic liquids[J]. Appl Radiat Isot, 2009, 67(12): 2146-2149.
|
[95] |
Zuo Y, Liu Y, Chen J, et al. Extraction and recovery of cerium(Ⅳ) along with fluorine(Ⅰ) from bastnasite leaching liquor by DEHEHP in C8mimPF6[J].J Chem Technol Biotechnol, 2009, 84(7): 949-956.
|
[96] |
Okamura H, Hirayama N, Morita K, et al. Synergistic effect of 18-crown-6 derivatives on chelate extraction of lanthanoids(Ⅲ) into an ionic liquid with 2-thenoyltrifluoroacetone[J]. Anal Sci, 2010, 26(5): 607-611.
|
[97] |
Yoon S J, Lee J G, Tajima H, et al. Extraction of lanthanide ions from aqueous solution by bis (2-ethylhexyl) phosphoric acid with room-temperature ionic liquids[J]. J Ind Eng Chem, 2010, 16(3): 350-354.
|
[98] |
Pribylova G A. Influence of ionic liquids on actinides extraction by diphenyl (dibutyl) carbamoylmethylphosphine oxide in different solvents from nitric acid solution[J]. J Radioanal Nucl Chem, 2011, 288(3): 693-697.
|
[99] |
Sun X Q, Bell J R, Luo H M, et al. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases[J]. Dalton Trans, 2011, 40(31): 8019-8023.
|
[100] |
Jensen M P, Borkowski M, Laszak I, et al. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid[J]. Sep Sci Technol, 2012, 47(2): 233-243.
|
[101] |
Matveeva E V, Sharova E V, Turanov A N, et al. Extraction properties of beta-aminophosphine oxides towards lanthanides and alkaline earth metals[J]. Cent Eur J Chem, 2012, 10(6): 1933-1941.
|
[102] |
Shiri-Yekta Z, Yaftian M R, Nilchi A. Extraction-separation of Eu(Ⅲ) and Th(Ⅳ) ions from nitrate media into a room-temperature ionic liquid[J]. J Iran Chem Soc, 2013, 10(2): 221-227.
|
[103] |
Yang F, Kubota F, Kamiya N, et al. Extraction of rare-earth ions with an 8-hydroxyquinoline derivative in an ionic liquid[J]. Solvent Extr Res Dev-Jap, 2013, 20: 123-129.
|
[104] |
Atanassova M, Kurteva V, Lubenov L, et al. Comparing extraction, synergism and separation of lanthanoids using acidic and neutral compounds in chloroform and one ionic liquid: is the latter always “better”?[J]. RSC Adv, 2014, 4(73): 38820-38829.
|
[105] |
Lohithakshan K V, Patil P, Aggarwal S K. Solvent extraction studies of plutonium(Ⅳ) and americium(Ⅲ) in room temperature ionic liquid(RTIL) by di-2-ethyl hexyl phosphoric acid(HDEHP) as extractant[J]. J Radioanal Nucl Chem, 2014, 301(1): 153-157.
|
[106] |
Mohapatra P K, Raut D R, Sengupta A. Extraction of uranyl ion from nitric acid medium using solvent containing TOPO and its mixture with D2EHPA in room temperature ionic liquids[J]. Sep Purif Technol, 2014, 133: 69-75.
|
[107] |
Okamura H, Takagi H, Isomura T, et al. Highly selective synergism for the extraction of lanthanoid(Ⅲ) ions with beta-diketones and trioctylphosphine oxide in an ionic liquid[J]. Anal Sci, 2014, 30(3): 323-325.
|
[108] |
Shen Y L, Li W K, Wu J R, et al. Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid[J]. Dalton Trans, 2014, 43(26): 10023-10032.
|
[109] |
Yuan L Y, Sun M, Liao X H, et al. Solvent extraction of U(Ⅵ) by trioctylphosphine oxide using a room-temperature ionic liquid[J]. Sci China Chem, 2014, 57(11): 1432-1438.
|
[110] |
Zhao Z G, Baba Y, Kubota F, et al. Synergistic extraction of rare-earth metals and separation of scandium using 2-thenoyltriuoroacetone and tri-n-octylphosphine oxide in an ionic liquid system[J]. J Chem Eng Jpn, 2014, 47(8): 656-662.
|
[111] |
Raut D R, Mohapatra P K. Extraction of uranyl ion using 2-thenoyltrifluoro acetone(HTTA) in room temperature ionic liquids[J]. Sep Sci Technol, 2015, 50(3): 380-386.
|
[112] |
Rout A, Binnemans K. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids[J]. Dalton Trans, 2015, 44(3): 1379-1387.
|
[113] |
Chen P Y. The assessment of removing strontium and cesium cations from aqueous solutions-based on the combined methods of ionic liquid extraction and electrodeposition[J]. Electrochim Acta, 2007, 52(17): 5484-5492.
|
[114] |
Bell T J, Ikeda Y. The application of novel hydrophobic ionic liquids to the extraction of uranium(Ⅵ) from nitric acid medium and a determination of the uranyl complexes formed[J]. Dalton Trans, 2011, 40(39): 10125-10130.
|
[115] |
Sun X Q, Ji Y, Guo L, et al. A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides[J]. Sep Purif Technol, 2011, 81(1): 25-30.
|
[116] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Ionic liquid extractants in molecular diluents: extraction behavior of europium(Ⅲ) in quarternary ammonium-based ionic liquids[J]. Sep Purif Technol, 2012, 95: 26-31.
|
[117] |
Biswas S, Rupawate V H, Roy S B, et al. Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(Ⅵ) extraction from aqueous media[J]. J Radioanal Nucl Chem, 2014, 300(2): 853-858.
|
[118] |
Stockmann T J, Zhang J, Montgomery A M, et al. Electrochemical assessment of water ionic liquid biphasic systems towards cesium extraction from nuclear waste[J]. Anal Chim Acta, 2014, 821: 41-47.
|
[119] |
Liu Y H, Zhu L L, Sun X Q, et al. Toward greener separations of rare earths: bifunctional ionic liquid extractants in biodiesel[J]. Aiche J, 2010, 56(9): 2338-2346.
|
[120] |
Ouadi A, Klimchuk O, Gaillard C, et al. Solvent extraction of U(Ⅵ) by task specific ionic liquids bearing phosphoryl groups[J]. Green Chem, 2007, 9(11): 1160-1162.
|
[121] |
Odinets I L, Sharova E V, Artyshin O I, et al. Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery[J]. Dalton Trans, 2010, 39(17): 4170-4178.
|
[122] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Unusual extraction of plutonium(Ⅳ) from uranium(Ⅵ) and americium(Ⅲ) using phosphonate based task specific ionic liquid[J]. Radiochim Acta, 2010, 98(8): 459-466.
|
[123] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Separation of plutonium(Ⅳ) from uranium(Ⅵ) using phosphonate-based task-specific ionic liquid[J]. Desalin Water Treat, 2012, 38(1-3): 179-183.
|
[124] |
Vicente J A, Mlonka A, Gunaratne H Q N, et al. Phosphine oxide functionalised imidazolium ionic liquids as tuneable ligands for lanthanide complexation[J]. Chem Commun, 2012, 48(49): 6115-6117.
|
[125] |
Mohapatra P K, Kandwal P, Iqbal M, et al. A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes[J]. Dalton Trans, 2013, 42(13): 4343-4347.
|
[126] |
Sengupta A, Mohapatra P K, Iqbal M, et al. A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes[J]. Dalton Trans, 2012, 41(23): 6970-6979.
|
[127] |
Sengupta A, Mohapatra P K, Iqbal M, et al. A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies[J]. Sep Purif Technol, 2013, 118: 264-270.
|
[128] |
Rout A, Binnemans K. Solvent Extraction of neodymium(Ⅲ) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent[J]. Ind Eng Chem Res, 2014, 53(15): 6500-6508.
|
[129] |
Ouadi A, Gadenne B, Hesemann P, et al. Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies[J]. Chem Eur J, 2006, 12(11): 3074-3081.
|
[130] |
Sun X Q, Ji Y, Chen J, et al. Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation[J]. J Rare Earths, 2009, 27(6): 932-936.
|
[131] |
Wang W, Yang H L, Cui H M, et al. Application of bifunctional ionic liquid extractants A336 CA-12 and A336 CA-100 to the lanthanum extraction and separation from rare earths in the chloride medium[J]. Ind Eng Chem Res, 2011, 50(12): 7534-7541.
|
[132] |
Yang H L, Wang W, Cui H M, et al. Recovery of rare earth elements from simulated fluorescent powder using bifunctional ionic liquid extractants(Bif-ILEs)[J]. J Chem Technol Biotechnol, 2012, 87(2): 198-205.
|
[133] |
Rout A, Venkatesan K A, Srinivasan T G, et al. Tuning the extractive properties of purex solvent using room temperature ionic liquid[J]. Sep Sci Technol, 2013, 48(17): 2576-2581.
|
[134] |
Sasaki K, Suzuki T, Mori T, et al. Selective liquid-liquid extraction of uranyl species using task-specific ionic liquid, betainium bis(trifluoromethylsulfonyl)imide[J]. Chem Lett, 2014, 43(6): 775-777.
|
[135] |
Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions[J]. Chem Commun, 2001, 01: 135-136.
|
[136] |
Katsuta S, Yoshimoto Y, Okai M, et al. Selective extraction of palladium and platinum from hydrochloric acid solutions by trioctylammonium-based mixed ionic liquids[J]. Ind Eng Chem Res, 2011, 50(22): 12735-12740.
|
[137] |
Shimojo K, Aoyagi N, Saito T, et al. Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant[J]. Anal Sci, 2014, 30(2): 263-269.
|
[138] |
Rout A, Wellens S, Binnemans K. Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids[J]. Rsc Adv, 2014, 4(11): 5753-5758.
|
[139] |
Rout A, Kotlarska J, Dehaen W, et al. Liquid-liquid extraction of neodymium(Ⅲ) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation[J]. Phys Chem Chem Phys, 2013, 15(39): 16533-16541.
|
[140] |
Cieszynska A, Wisniewski M. Extraction of palladium(Ⅱ) from chloride solutions with Cyphos (R) IL 101/toluene mixtures as novel extractant[J]. Sep Purif Technol, 2010, 73(2): 202-207.
|
[141] |
Hu Q Y, Zhao J M, Wang F C, et al. Selective extraction of vanadium from chromium by pure [C8mim][PF6]: an anion exchange process[J]. Sep Purif Technol, 2014, 131: 94-101.
|
[142] |
褚泰伟,秦丽,刘新起,等.离子液体用于溶剂萃取铀酰离子的初步研究[J].核化学与放射化学,2007,29(3):146-150.
|
[143] |
Zhang Y W, Liu Z Y, Fan F Y, et al. Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids[J]. Sep Sci Technol, 2014, 49(12): 1895-1902.
|
[144] |
Zhang L, Chen J, Jin W Q, et al. Extraction mechanism of cerium(Ⅳ) in H2SO4/H3PO4 system using bifunctional ionic liquid extractants[J]. J Rare Earth, 2013, 31(12): 1195-1201.
|
[145] |
Zuo Y, Liu Y, Chen J, et al. The separation of cerium(Ⅳ) from nitric acid solutions containing thorium(Ⅳ) and lanthanides(Ⅲ) using pure C8mimPF6 as extracting phase[J]. Ind Eng Chem Res, 2008, 47(7): 2349-2355.
|
[146] |
Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731): 28-29.
|
[147] |
Wang J S, Chiu K. Metal extraction from solid matrices using a two-surfactant microemulsion in neat supercritical carbon dioxide[J]. Microchim Acta, 2009, 167(1): 61-65.
|
[148] |
Mekki S, Wai C M, Billard I, et al. Cu(Ⅱ) extraction by supercritical fluid carbon dioxide from a room temperature ionic liquid using fluorinated beta-diketones[J]. Green Chem, 2005, 7(6): 421-423.
|
[149] |
Pourmortazavi S M, Hajimirsadeghi S S, Kohsari I, et al. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of different metals from a solid matrix with cyanex 301 as a ligand[J]. J Chem Eng Data, 2004, 49(6): 1530-1534.
|
[150] |
Yamini Y, Saleh A, Khajeh M. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(Ⅳ) and rhenium(Ⅶ) from a solid matrix using cyanex 301[J]. Sep Purif Technol, 2008, 61(1): 109-114.
|
[151] |
Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals[J]. Phys Chem Chem Phys, 2006, 8(37): 4265-4279.
|
[152] |
邱凌云,袁立永,谭绪凤,等.铀在离子液体中的物种及电化学行为研究进展[J].核化学与放射化学,2014,36(2):65-74.
|
[153] |
Rao P R V, Venkatesan K A, Srinivasan T G. Studies on applications of room temperature ionic liquids[J]. Prog Nucl Energ, 2008, 50(2): 449-455.
|
[154] |
Chen P Y, Hussey C L. Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium-bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid[J]. Electrochim Acta, 2004, 49(28): 5125-5138.
|
[155] |
Tsuda T, Hussey C L, Luo H M, et al. Recovery of cesium extracted from simulated tank waste with an ionic liquid: water and oxygen effects[J]. J Electrochem Soc, 2006, 153(11): 171-176.
|
[156] |
Bridges N J, Visser A E, Williamson M J, et al. Effects of gamma radiation on electrochemical properties of ionic liquids[J]. Radiochim Acta, 2010, 98(4): 243-247.
|
[1] | XU Ji-tang, YAO Ben-lin, XIAO Yi-qun, JIA Yan-hong, MENG Zhao-kai, LI Xun, YANG Ming-shuai, LI Bin, HE Hui, YE Guo-an. Research Progress in Lithium Thermal Reduction Technology for Oxide Spent Fuel[J]. Journal of Nuclear and Radiochemistry, 2024, 46(5): 409-424. DOI: 10.7538/hhx.2024.46.05.0409 |
[2] | HAN Zhe, GAO Yuan, WANG Chun-hui, QIU Jie, HE Hui, JIAO Cai-shan. Research Progress of Alkaline Process of Spent Nuclear Fuel Reprocessing[J]. Journal of Nuclear and Radiochemistry, 2024, 46(1): 1-19. DOI: 10.7538/hhx.2023.YX.2022076 |
[3] | ZHANG Chun-long, DONG Yong-chang, LYU Dan, SONG Feng-li, CHEN Si-zhe, XU Chun-yan, LIU Xin-hua. Research of Equipment Corrosion in Spent Fuel Reprocessing Plant of Japan and Enlightenment[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 575-588. DOI: 10.7538/hhx.2022.YX.2022023 |
[4] | QIN Zhi, FAN Fang-li, TIAN Wei, TAN Cun-min, WU Xiao-lei, HUANG Qing-gang, WANG Jie-ru, CHEN De-sheng, CAO Shi-wei, BAI Jing, YIN Xiao-jie, WANG Yang. Research on Spent Nuclear Fuel Cycle and Regeneration for Accelerator Driven Advanced Nuclear Energy System[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033 |
[5] | TAN Cun-min, CHEN De-sheng, WANG Jie-ru, HUANG Qing-gang, CAO Shi-wei, QIN Zhi. Head-End Process of Simulated Spent Fuels by Vol-Oxidation Treatment[J]. Journal of Nuclear and Radiochemistry, 2021, 43(5): 387-396. DOI: 10.7538/hhx.2021.YX.2020052 |
[6] | TANG Hao, REN Yi-ming, SHAO Lang, ZHONG Yi, GAO Rui. Development of Pyroprocessing of Spent Nuclear Fuel by Molten Salts Electrolysis[J]. Journal of Nuclear and Radiochemistry, 2017, 39(6): 385-396. DOI: 10.7538/hhx.2017.39.06.0385 |
[7] | LAN Tian, LUO Fang-xiang, XIAO Song-tao, LIU Xie-chun, YANG He, MENG Zhao-kai. Reductive Stripping of High Content Plutonium With Hydroxylamine Nitrate[J]. Journal of Nuclear and Radiochemistry, 2016, 38(3): 154-158. DOI: 10.7538/hhx.2016.38.03.0154 |
[8] | BAI Xue, CHANG Zhi-yuan. Analytical Methods of Dry Reprocessing Technology for Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2016, 38(3): 145-153. DOI: 10.7538/hhx.2016.38.03.0145 |
[9] | LI Jin-ying, SHI Lei, HU Yan-tao. Some Considerations on the Construction of a Spent Nuclear Fuel Reprocessing Plant in China[J]. Journal of Nuclear and Radiochemistry, 2011, 33(4): 204-210. |
[10] | LIU Xue-gang. Research on Dry Reprocessing Technology of Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2009, 31(专刊): 35-44. |