• 右
  • 左
LIU Hai-wang, YANG Tao, CHEN Qing-de, SHEN Xing-hai. Extraction Behaviors of Ionic Liquid Systems and Application Perspectives in Reprocessing of Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 286-309. DOI: 10.7538/hhx.2015.37.05.0286
Citation: LIU Hai-wang, YANG Tao, CHEN Qing-de, SHEN Xing-hai. Extraction Behaviors of Ionic Liquid Systems and Application Perspectives in Reprocessing of Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 286-309. DOI: 10.7538/hhx.2015.37.05.0286

Extraction Behaviors of Ionic Liquid Systems and Application Perspectives in Reprocessing of Spent Nuclear Fuel

More Information
  • The application of ionic liquids(IL) in the reprocessing of spent nuclear fuel has attracted much attention for their characteristic properties. In this article, the recent progress about extraction behaviors of some actinides and fission products in spent nuclear fuel by various extractants in different ionic liquids was reviewed. Especially, the key issues concerning the efficiency, selectivity and mechanism of extraction as well as stripping in different ionic liquid-based extraction systems were discussed. By summarizing the present research, we could find that the extraction efficiency in IL extraction systems was often higher than that in traditional extraction systems because of its extraction mechanism and the extraction selectivity of some ionic liquid-based extraction systems was good, indicating their application prospect in extraction. After the introduction of three mechanisms in IL-based extraction (i.e., cation-exchange mechanism, anion-exchange mechanism and solvation mechanism), the third phase problem and synergistic extraction were summarized. Three common methods of stripping (i.e., liquid-liquid stripping, supercritical CO2 stripping and electrochemical stripping) were also discussed from their advantages and disadvantages. Finally, the research results were concluded and the application foreground of ionic liquid-based extraction systems was presented.
  • [1]
    Walden P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imper Sci St Petersbourg, 1914, 8: 405-422.
    [2]
    Hurley F H. Electrodeposition of aluminum: US, 2446331[P]. 1948.
    [3]
    Sun X Q, Luo H M, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle[J]. Chem Rev, 2012, 112(4): 2100-2128.
    [4]
    Zhao H, Xia S Q, Ma P S. Use of ionic liquids as “green” solvents for extractions[J]. J Chem Technol Biotechnol, 2005, 80(10): 1089-1096.
    [5]
    Kubota F, Goto M. Application of ionic liquids to solvent extraction[J]. Solvent Extr Res Dev-Jap, 2006, 13: 23-36.
    [6]
    Li Z J, Chang J, Shan H X, et al. Advance of room temperature ionic liquid as solvent for extraction and separation[J]. Rev Anal Chem, 2007, 26(2): 109-153.
    [7]
    Mudring A V, Tang S F. Ionic liquids for lanthanide and actinide chemistry[J]. Eur J Inorg Chem, 2010, 18: 2569-2581.
    [8]
    Baba Y, Kubota F, Kamiya N, et al. Recent advances in extraction and separation of rare-earth metals using ionic liquids[J]. J Chem Eng Jpn, 2011, 44(10): 679-685.
    [9]
    Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding[J]. Anal Bioanal Chem, 2011, 400(6): 1555-1566.
    [10]
    Kubota F, Baba Y, Goto M. Application of ionic liquids for the separation of rare earth metals[J]. Solvent Extr Res Dev-Jpn, 2012, 19: 17-28.
    [11]
    Liu Y H, Chen J, Li D Q. Application and perspective of ionic liquids on rare earths green separation[J]. Sep Sci Technol, 2012, 47(2): 223-232.
    [12]
    Rao P R V, Venkatesan K A, Rout A, et al. Potential applications of room temperature ionic liquids for fission products and actinide separation[J]. Sep Sci Technol, 2012, 47(2): 204-222.
    [13]
    沈兴海,徐超,刘新起,等.离子液体在金属离子萃取分离中的应用[J].核化学与放射化学,2006,28(3):129-138.
    [14]
    徐超,沈兴海,陈庆德,等.冠醚-离子液体体系对水相中锶离子的萃取研究[J].中国科学B辑:化学,2009,52(11):1402-1408.
    [15]
    Xu C, Yuan L Y, Shen X H, et al. Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect[J]. Dalton Trans, 2010, 39(16): 3897-3902.
    [16]
    沈兴海,张京晶,高嵩,等.典型超分子体系在放射化学领域的应用[J].化学进展,2011,23(7):1386-1399.
    [17]
    Sun T X, Wang Z M, Shen X H. Crystallization of cesium complex containing bis(2-propyloxy)calix[4]crown-6 and bis[(trifluoromethyl)sulfonyl]imide[J]. Inorg Chim Acta, 2012, 390: 8-11.
    [18]
    Fu J, Chen Q D, Sun T X, et al. Extraction of Th(Ⅳ) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping[J]. Sep Purif Technol, 2013, 119: 66-71.
    [19]
    Gao S, Sun T X, Chen Q D, et al. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids[J]. J Hazard Mater, 2013, 263: 562-568.
    [20]
    Sun T X, Shen X H, Chen Q D. A further understanding of the cation exchange mechanism for the extraction of Sr2+ and Cs+ by ionic liquid[J]. Sci China-Chem, 2013, 56(6): 782-788.
    [21]
    Sun T X, Shen X H, Chen Q D, et al. Identification of F- and SO2-4 as the radiolytic products of the ionic liquid C4mimNTf2 and their effect on the extraction of UO2+2[J]. Radiat Phys Chem, 2013, 83: 74-78.
    [22]
    吴京珂,沈兴海,陈庆德.CMPO-离子液体萃取分离铀(Ⅵ)体系的电化学性质[J].物理化学学报,2013,29(8):1705-1711.
    [23]
    孙涛祥,沈兴海,陈庆德.CMPO和TBP在离子液体中选择性萃取水溶液中铀酰离子的研究[J].物理化学学报,2015,31(Suppl):32-38.
    [24]
    Fu J, Chen Q, Shen X. Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide[J]. Sci China-Chem, 2015, 58(3): 545-550.
    [25]
    刘海望,沈兴海,陈庆德.三丁基氧化膦-离子液体体系萃取UO2(NO3)2的机理和选择性[J].物理化学学报,2015,31(5):843-851.
    [26]
    Yuan L Y, Xu C, Peng J, et al. Identification of the radiolytic product of hydrophonic ionic liquid [C4mim][NTf2] during removal of Sr2+ from aqueous solution[J]. Dalton Trans, 2009, 38: 7873-7875.
    [27]
    孙涛祥.离子液体体系萃取Sr、Cs、U、Tc等元素的研究[D].北京:北京大学,2013.
    [28]
    刘海望.离子液体体系对U 和Eu 的萃取及其机理研究[D].北京:北京大学,2015.
    [29]
    王硕珏,敖银勇,周翰洋,等.离子液体的辐射效应研究进展[J].物理化学学报,2014,30(9):1597-1604.
    [30]
    袁立永,彭静,翟茂林.咪唑离子液体及其萃取体系的辐射效应研究[J].化学进展,2011(7):1469-1477.
    [31]
    Visser A E, Jensen M P, Laszak I, et al. Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation[J]. Inorg Chem, 2003, 42(7): 2197-2199.
    [32]
    Visser A E, Rogers R D. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry[J]. J Solid State Chem, 2003, 171(1): 109-113.
    [33]
    Giridhar P, Venkatesan K A, Srinivasan T G, et al. Extraction of uranium(Ⅵ) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent[J]. J Radioanal Nucl Chem, 2005, 265(1): 31-38.
    [34]
    Nakashima K, Kubota F, Maruyama T, et al. Ionic liquids as a novel solvent for lanthanide extraction[J]. Anal Sci, 2003, 19(8): 1097-1098.
    [35]
    Nakashima K, Kubota F, Maruyama T, et al. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes[J]. Ind Eng Chem Res, 2005, 44(12): 4368-4372.
    [36]
    Dietz M L, Stepinski D C. Anion concentration dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids[J]. Talanta, 2008, 75(2): 598-603.
    [37]
    Giridhar P, Venkatesan K A, Subramaniam S, et al. Extraction of uranium(Ⅵ) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase[J]. J Alloys Compd, 2008, 448(1): 104-108.
    [38]
    Lohithakshan K V, Aggarwal S K. Solvent extraction studies of Pu(Ⅳ) with CMPO in 1-octyl 3-methyl imidazolium hexa fluorophosphate (C8mimPF6) room temperature ionic liquid(RTIL)[J]. Radiochim Acta, 2008, 96(2): 93-97.
    [39]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Extraction of americium(Ⅲ) from nitric acid medium by CMPO-TBP extractants in ionic liquid diluent[J]. Radiochim Acta, 2009, 97(12): 719-725.
    [40]
    Wang J S, Sheaff C N, Yoon B, et al. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction[J]. Chem Eur J, 2009, 15(17): 4458-4463.
    [41]
    Billard I, Ouadi A, Jobin E, et al. Understanding the extraction mechanism in ionic liquids: UO2+2/HNO3/TBP/C4mimTf2N as a case study[J]. Solvent Extr Ion Exch, 2011, 29(4): 577-601.
    [42]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Room temperature ionic liquid diluent for the extraction of Eu(Ⅲ) using TRUEX extractants[J]. J Radioanal Nucl Chem, 2011, 290(1): 215-219.
    [43]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Extraction and third phase formation behavior of Eu(Ⅲ) in CMPO-TBP extractants present in room temperature ionic liquid[J]. Sep Purif Technol, 2011, 76(3): 238-243.
    [44]
    黄磊,黄卫,付海英,等.CMPO-离子液体体系对Ce3+的萃取[J].无机化学学报,2012,28(4):669-673.
    [45]
    Shimojo K, Kurahashi K, Naganawa H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids[J]. Dalton Trans, 2008, 37: 5083-5088.
    [46]
    Kubota F, Shimobori Y, Baba Y, et al. Application of ionic liquids to extraction separation of rare earth metals with an effective diglycol amic acid extractant[J]. J Chem Eng Jpn, 2011, 44(5): 307-312.
    [47]
    Shen Y L, Tan X W, Wang L, et al. Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide[J]. Sep Purif Technol, 2011, 78(3): 298-302.
    [48]
    Shen Y L, Wang S F, Zhu L, et al. Extraction of Th(Ⅳ) from an HNO3 solution by diglycolamide in ionic liquids[J]. Ind Eng Chem Res, 2011, 50(24): 13990-13996.
    [49]
    Bonnaffe-Moity M, Ouadi A, Mazan V, et al. Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid[J]. Dalton Trans, 2012, 41(25): 7526-7536.
    [50]
    Panja S, Mohapatra P K, Tripathi S C, et al. A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction[J]. Sep Purif Technol, 2012, 96: 289-295.
    [51]
    Prathibha T, Venkatesan K A, Selvan B R, et al. Anomalous extraction behavior of americium(Ⅲ) in some diglycolamide isomers present in ionic liquid medium[J]. Radiochim Acta, 2012, 100(12): 907-913.
    [52]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Liquid-liquid extraction of Pu(Ⅳ), U(Ⅵ) and Am(Ⅲ) using malonamide in room temperature ionic liquid as diluent[J]. J Hazard Mater, 2012, 221: 62-67.
    [53]
    Sengupta A, Mohapatra P K, Iqbal M, et al. Extraction of Am(Ⅲ) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a “green” approach for radioactive waste processing[J]. RSC Adv, 2012, 2(19): 7492-7500.
    [54]
    Patil A B, Pathak P, Shinde V S, et al. Efficient solvent system containing malonamides in room temperature ionic liquids: actinide extraction, fluorescence and radiolytic degradation studies[J]. Dalton Trans, 2013, 42(5): 1519-1529.
    [55]
    Yang F, Kubota F, Baba Y, et al. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system[J]. J Hazard Mater, 2013, 254: 79-88.
    [56]
    Sengupta A, Mohapatra P K, Iqbal M, et al. Solvent systems containing diglycolamide-functionalised calix[4]arenes in room temperature ionic liquid for metal ion extraction: studies with simulated high-level wastes[J]. Supramol Chem, 2014, 26(7): 612-619.
    [57]
    Sun M, Yuan L Y, Tan N, et al. Solvent extraction of uranium(Ⅵ) by a dipicolinamide using a room-temperature ionic liquid[J]. Radiochim Acta, 2014, 102(1): 87-92.
    [58]
    Rout A, Karmakar S, Venkatesan K A, et al. Room temperature ionic liquid diluent for the mutual separation of europium(Ⅲ) from americium(Ⅲ)[J]. Sep Purif Technol, 2011, 81(2): 109-115.
    [59]
    Pathak P N, Prabhu D R, Kumari N, et al. Studies on the extraction of actinides using a solvent containing D2EHiBA in room temperature ionic liquids: unusual extraction of the tetravalent ions[J]. Sep Sci Technol, 2015, 50(3): 373-379.
    [60]
    Dai S, Ju Y H, Barnes C E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. J Chem Soc-Dalton Trans, 1999, 8: 1201-1202.
    [61]
    Visser A E, Swatloski R P, Reichert W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Ind Eng Chem Res, 2000, 39(10): 3596-3604.
    [62]
    Chun S, Dzyuba S V, Bartsch R A. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether[J]. Anal Chem, 2001, 73(15): 3737-3741.
    [63]
    Dietz M L, Dzielawa J A. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the “greenness” of ionic liquids as diluents in liquid-liquid extraction[J]. Chem Commun, 2001, 20: 2124-2125.
    [64]
    Jensen M P, Dzielawa J A, Rickert P, et al. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid[J]. J Am Chem Soc, 2002, 124(36): 10664-10665.
    [65]
    Dietz M L, Dzielawa J A, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem, 2003, 5(6): 682-685.
    [66]
    Luo H M, Dai S, Bonnesen P V. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers[J]. Anal Chem, 2004, 76(10): 2773-2779.
    [67]
    Luo H M, Dai S, Bonnesen P V, et al. Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids[J]. Anal Chem, 2004, 76(11): 3078-3083.
    [68]
    Dietz M L, Stepinski D C. A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids(RTILs): implications for the “greenness” of RTILs as extraction solvents[J]. Green Chem, 2005, 7(10): 747-750.
    [69]
    Stepinski D C, Jensen M P, Dzielawa J A, et al. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids[J]. Green Chem, 2005, 7(3): 151-158.
    [70]
    Vayssiere P, Chaumont A, Wipff G. Cation extraction by 18-crown-6 to a room-temperature ionic liquid: the effect of solvent humidity investigated by molecular dynamics simulations[J]. Phys Chem Chem Phys, 2005, 7(1): 124-135.
    [71]
    Heitzman H, Young B A, Rausch D J, et al. Fluorous ionic liquids as solvents for the liquid-liquid extraction of metal ions by macrocyclic polyethers[J]. Talanta, 2006, 69(2): 527-531.
    [72]
    Luo H, Dai S, Bonnesen P V, et al. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6[J]. Solvent Extr Ion Exch, 2006, 24(1): 19-31.
    [73]
    Nishi N, Murakami H, Imakura S, et al. Facilitated transfer of alkali-metal cations by dibenzo-18-crown-6 across the electrochemically polarized interface between an aqueous solution and a hydrophobic room-temperature ionic -liquid[J]. Anal Chem, 2006, 78(16): 5805-5812.
    [74]
    Park S H, Demberelnyamba D, Jang S H, et al. Ionic liquid-type crown ether as a novel medium for a liquid/liquid extraction of radioactive metal ion Sr(85)2+[J]. Chem Lett, 2006, 35(9): 1024-1025.
    [75]
    Dietz M L, Jakab S, Yamato K, et al. Stereochemical effects on the mode of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem, 2008, 10(2): 174-176.
    [76]
    Hirayama N, Okamura H, Kidani K, et al. Ionic liquid synergistic cation-exchange system for the selective extraction of lanthanum(Ⅲ) using 2-thenoyltrifluoroacetone and 18-crown-6[J]. Anal Sci, 2008, 24(6): 697-699.
    [77]
    Shimojo K, Okamura H, Hirayama N, et al. Cooperative intramolecular interaction of diazacrown ether bearing beta-diketone fragments on an ionic liquid extraction system[J]. Dalton Trans, 2009, 25: 4850-4852.
    [78]
    Vendilo A G, Djigailo D I, Smirnova S V, et al. 18-crown-6 and dibenzo-18-crown-6 assisted extraction of cesium from water into room temperature ionic liquids and its correlation with stability constants for cesium complexes[J]. Molecules, 2009, 14(12): 5001-5016.
    [79]
    Stepinski D C, Vandegrift G F, Shkrob I A, et al. Extraction of tetra-oxo anions into a hydrophobic, ionic liquid-based solvent without concomitant ion exchange[J]. Ind Eng Chem Res, 2010, 49(12): 5863-5868.
    [80]
    Ansari S A, Mohapatra P K, Raut D R, et al. Extraction of caesium(Ⅰ) from HNO3 medium using room temperature ionic liquid containing calix[4] crown ligands as the selective extractants[J]. Radiochim Acta, 2011, 99(11): 713-717.
    [81]
    Turanov A N, Karandashev V K, Baulin V E. Extraction of lanthanides(Ⅲ) with N, N′-bis(diphenylphosphinyl-methylcarbonyl)diaza-18-crown-6 in the presence of ionic liquids[J]. Solvent Extr Ion Exch, 2012, 30(3): 244-261.
    [82]
    Turanov A N, Karandashev V K, Baulin V E. Extraction of rare earth elements with phosphoryl-containing lariat crown ether in the presence of ionic liquids[J]. Russ J Inorg Chem, 2012, 57(2): 292-296.
    [83]
    Jensen M P, Neuefeind J, Beitz J V, et al. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange[J]. J Am Chem Soc, 2003, 125(50): 15466-15473.
    [84]
    Cocalia V A, Jensen M P, Holbrey J D, et al. Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents[J]. Dalton Trans, 2005, 11: 1966-1971.
    [85]
    Mekki S, Wai C M, Billard I, et al. Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction[J]. Chem Eur J, 2006, 12(6): 1760-1766.
    [86]
    Shimojo K, Naganawa H, Kubota F, et al. Solvent extraction of lanthanides into an ionic liquid containing N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine[J]. Chem Lett, 2006, 35(5): 484-485.
    [87]
    Sieffert N, Wipff G. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces[J]. J Phys Chem B, 2006, 110(39): 19497-19506.
    [88]
    Kozonoi N, Ikeda Y. Extraction mechanism of metal ion from aqueous solution to the hydrophobic ionic liquid, 1-butyl-3-methylimidazolium nonafluorobutanesulfonate[J]. Monatsh Chem, 2007, 138(11): 1145-1151.
    [89]
    Sun X Q, Wu D B, Chen J, et al. Separation of scandium(Ⅲ) from lanthanides(Ⅲ) with room temperature ionic liquid based extraction containing Cyanex 925[J]. J Chem Technol Biotechnol, 2007, 82(3): 267-272.
    [90]
    Kubota F, Koyanagi Y, Nakashima K, et al. Extraction of lanthanide ions with an organophosphorous extractant into ionic liquids[J]. Solvent Extr Res Dev-Jpn, 2008, 15: 81-87.
    [91]
    Sun X Q, Peng B, Chen J, et al. An effective method for enhancing metal-ions′ selectivity of ionic liquid-based extraction system: adding water-soluble complexing agent[J]. Talanta, 2008, 74(4): 1071-1074.
    [92]
    Turanov A N, Karandashev V K, Baulin V E. Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions[J]. Russ J Inorg Chem, 2008, 53(6): 970-975.
    [93]
    Zuo Y, Chen J, Li D Q. Reversed micellar solubilization extraction and separation of thorium(Ⅳ) from rare earth(Ⅲ) by primary amine N1923 in ionic liquid[J]. Sep Purif Technol, 2008, 63(3): 684-690.
    [94]
    Srncik M, Kogelnig D, Stojanovic A, et al. Uranium extraction from aqueous solutions by ionic liquids[J]. Appl Radiat Isot, 2009, 67(12): 2146-2149.
    [95]
    Zuo Y, Liu Y, Chen J, et al. Extraction and recovery of cerium(Ⅳ) along with fluorine(Ⅰ) from bastnasite leaching liquor by DEHEHP in C8mimPF6[J].J Chem Technol Biotechnol, 2009, 84(7): 949-956.
    [96]
    Okamura H, Hirayama N, Morita K, et al. Synergistic effect of 18-crown-6 derivatives on chelate extraction of lanthanoids(Ⅲ) into an ionic liquid with 2-thenoyltrifluoroacetone[J]. Anal Sci, 2010, 26(5): 607-611.
    [97]
    Yoon S J, Lee J G, Tajima H, et al. Extraction of lanthanide ions from aqueous solution by bis (2-ethylhexyl) phosphoric acid with room-temperature ionic liquids[J]. J Ind Eng Chem, 2010, 16(3): 350-354.
    [98]
    Pribylova G A. Influence of ionic liquids on actinides extraction by diphenyl (dibutyl) carbamoylmethylphosphine oxide in different solvents from nitric acid solution[J]. J Radioanal Nucl Chem, 2011, 288(3): 693-697.
    [99]
    Sun X Q, Bell J R, Luo H M, et al. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases[J]. Dalton Trans, 2011, 40(31): 8019-8023.
    [100]
    Jensen M P, Borkowski M, Laszak I, et al. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid[J]. Sep Sci Technol, 2012, 47(2): 233-243.
    [101]
    Matveeva E V, Sharova E V, Turanov A N, et al. Extraction properties of beta-aminophosphine oxides towards lanthanides and alkaline earth metals[J]. Cent Eur J Chem, 2012, 10(6): 1933-1941.
    [102]
    Shiri-Yekta Z, Yaftian M R, Nilchi A. Extraction-separation of Eu(Ⅲ) and Th(Ⅳ) ions from nitrate media into a room-temperature ionic liquid[J]. J Iran Chem Soc, 2013, 10(2): 221-227.
    [103]
    Yang F, Kubota F, Kamiya N, et al. Extraction of rare-earth ions with an 8-hydroxyquinoline derivative in an ionic liquid[J]. Solvent Extr Res Dev-Jap, 2013, 20: 123-129.
    [104]
    Atanassova M, Kurteva V, Lubenov L, et al. Comparing extraction, synergism and separation of lanthanoids using acidic and neutral compounds in chloroform and one ionic liquid: is the latter always “better”?[J]. RSC Adv, 2014, 4(73): 38820-38829.
    [105]
    Lohithakshan K V, Patil P, Aggarwal S K. Solvent extraction studies of plutonium(Ⅳ) and americium(Ⅲ) in room temperature ionic liquid(RTIL) by di-2-ethyl hexyl phosphoric acid(HDEHP) as extractant[J]. J Radioanal Nucl Chem, 2014, 301(1): 153-157.
    [106]
    Mohapatra P K, Raut D R, Sengupta A. Extraction of uranyl ion from nitric acid medium using solvent containing TOPO and its mixture with D2EHPA in room temperature ionic liquids[J]. Sep Purif Technol, 2014, 133: 69-75.
    [107]
    Okamura H, Takagi H, Isomura T, et al. Highly selective synergism for the extraction of lanthanoid(Ⅲ) ions with beta-diketones and trioctylphosphine oxide in an ionic liquid[J]. Anal Sci, 2014, 30(3): 323-325.
    [108]
    Shen Y L, Li W K, Wu J R, et al. Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid[J]. Dalton Trans, 2014, 43(26): 10023-10032.
    [109]
    Yuan L Y, Sun M, Liao X H, et al. Solvent extraction of U(Ⅵ) by trioctylphosphine oxide using a room-temperature ionic liquid[J]. Sci China Chem, 2014, 57(11): 1432-1438.
    [110]
    Zhao Z G, Baba Y, Kubota F, et al. Synergistic extraction of rare-earth metals and separation of scandium using 2-thenoyltriuoroacetone and tri-n-octylphosphine oxide in an ionic liquid system[J]. J Chem Eng Jpn, 2014, 47(8): 656-662.
    [111]
    Raut D R, Mohapatra P K. Extraction of uranyl ion using 2-thenoyltrifluoro acetone(HTTA) in room temperature ionic liquids[J]. Sep Sci Technol, 2015, 50(3): 380-386.
    [112]
    Rout A, Binnemans K. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids[J]. Dalton Trans, 2015, 44(3): 1379-1387.
    [113]
    Chen P Y. The assessment of removing strontium and cesium cations from aqueous solutions-based on the combined methods of ionic liquid extraction and electrodeposition[J]. Electrochim Acta, 2007, 52(17): 5484-5492.
    [114]
    Bell T J, Ikeda Y. The application of novel hydrophobic ionic liquids to the extraction of uranium(Ⅵ) from nitric acid medium and a determination of the uranyl complexes formed[J]. Dalton Trans, 2011, 40(39): 10125-10130.
    [115]
    Sun X Q, Ji Y, Guo L, et al. A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides[J]. Sep Purif Technol, 2011, 81(1): 25-30.
    [116]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Ionic liquid extractants in molecular diluents: extraction behavior of europium(Ⅲ) in quarternary ammonium-based ionic liquids[J]. Sep Purif Technol, 2012, 95: 26-31.
    [117]
    Biswas S, Rupawate V H, Roy S B, et al. Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(Ⅵ) extraction from aqueous media[J]. J Radioanal Nucl Chem, 2014, 300(2): 853-858.
    [118]
    Stockmann T J, Zhang J, Montgomery A M, et al. Electrochemical assessment of water ionic liquid biphasic systems towards cesium extraction from nuclear waste[J]. Anal Chim Acta, 2014, 821: 41-47.
    [119]
    Liu Y H, Zhu L L, Sun X Q, et al. Toward greener separations of rare earths: bifunctional ionic liquid extractants in biodiesel[J]. Aiche J, 2010, 56(9): 2338-2346.
    [120]
    Ouadi A, Klimchuk O, Gaillard C, et al. Solvent extraction of U(Ⅵ) by task specific ionic liquids bearing phosphoryl groups[J]. Green Chem, 2007, 9(11): 1160-1162.
    [121]
    Odinets I L, Sharova E V, Artyshin O I, et al. Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery[J]. Dalton Trans, 2010, 39(17): 4170-4178.
    [122]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Unusual extraction of plutonium(Ⅳ) from uranium(Ⅵ) and americium(Ⅲ) using phosphonate based task specific ionic liquid[J]. Radiochim Acta, 2010, 98(8): 459-466.
    [123]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Separation of plutonium(Ⅳ) from uranium(Ⅵ) using phosphonate-based task-specific ionic liquid[J]. Desalin Water Treat, 2012, 38(1-3): 179-183.
    [124]
    Vicente J A, Mlonka A, Gunaratne H Q N, et al. Phosphine oxide functionalised imidazolium ionic liquids as tuneable ligands for lanthanide complexation[J]. Chem Commun, 2012, 48(49): 6115-6117.
    [125]
    Mohapatra P K, Kandwal P, Iqbal M, et al. A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes[J]. Dalton Trans, 2013, 42(13): 4343-4347.
    [126]
    Sengupta A, Mohapatra P K, Iqbal M, et al. A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes[J]. Dalton Trans, 2012, 41(23): 6970-6979.
    [127]
    Sengupta A, Mohapatra P K, Iqbal M, et al. A diglycolamide-functionalized task specific ionic liquid (TSIL) for actinide extraction: solvent extraction, thermodynamics and radiolytic stability studies[J]. Sep Purif Technol, 2013, 118: 264-270.
    [128]
    Rout A, Binnemans K. Solvent Extraction of neodymium(Ⅲ) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent[J]. Ind Eng Chem Res, 2014, 53(15): 6500-6508.
    [129]
    Ouadi A, Gadenne B, Hesemann P, et al. Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies[J]. Chem Eur J, 2006, 12(11): 3074-3081.
    [130]
    Sun X Q, Ji Y, Chen J, et al. Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation[J]. J Rare Earths, 2009, 27(6): 932-936.
    [131]
    Wang W, Yang H L, Cui H M, et al. Application of bifunctional ionic liquid extractants A336 CA-12 and A336 CA-100 to the lanthanum extraction and separation from rare earths in the chloride medium[J]. Ind Eng Chem Res, 2011, 50(12): 7534-7541.
    [132]
    Yang H L, Wang W, Cui H M, et al. Recovery of rare earth elements from simulated fluorescent powder using bifunctional ionic liquid extractants(Bif-ILEs)[J]. J Chem Technol Biotechnol, 2012, 87(2): 198-205.
    [133]
    Rout A, Venkatesan K A, Srinivasan T G, et al. Tuning the extractive properties of purex solvent using room temperature ionic liquid[J]. Sep Sci Technol, 2013, 48(17): 2576-2581.
    [134]
    Sasaki K, Suzuki T, Mori T, et al. Selective liquid-liquid extraction of uranyl species using task-specific ionic liquid, betainium bis(trifluoromethylsulfonyl)imide[J]. Chem Lett, 2014, 43(6): 775-777.
    [135]
    Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions[J]. Chem Commun, 2001, 01: 135-136.
    [136]
    Katsuta S, Yoshimoto Y, Okai M, et al. Selective extraction of palladium and platinum from hydrochloric acid solutions by trioctylammonium-based mixed ionic liquids[J]. Ind Eng Chem Res, 2011, 50(22): 12735-12740.
    [137]
    Shimojo K, Aoyagi N, Saito T, et al. Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant[J]. Anal Sci, 2014, 30(2): 263-269.
    [138]
    Rout A, Wellens S, Binnemans K. Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids[J]. Rsc Adv, 2014, 4(11): 5753-5758.
    [139]
    Rout A, Kotlarska J, Dehaen W, et al. Liquid-liquid extraction of neodymium(Ⅲ) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation[J]. Phys Chem Chem Phys, 2013, 15(39): 16533-16541.
    [140]
    Cieszynska A, Wisniewski M. Extraction of palladium(Ⅱ) from chloride solutions with Cyphos (R) IL 101/toluene mixtures as novel extractant[J]. Sep Purif Technol, 2010, 73(2): 202-207.
    [141]
    Hu Q Y, Zhao J M, Wang F C, et al. Selective extraction of vanadium from chromium by pure [C8mim][PF6]: an anion exchange process[J]. Sep Purif Technol, 2014, 131: 94-101.
    [142]
    褚泰伟,秦丽,刘新起,等.离子液体用于溶剂萃取铀酰离子的初步研究[J].核化学与放射化学,2007,29(3):146-150.
    [143]
    Zhang Y W, Liu Z Y, Fan F Y, et al. Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids[J]. Sep Sci Technol, 2014, 49(12): 1895-1902.
    [144]
    Zhang L, Chen J, Jin W Q, et al. Extraction mechanism of cerium(Ⅳ) in H2SO4/H3PO4 system using bifunctional ionic liquid extractants[J]. J Rare Earth, 2013, 31(12): 1195-1201.
    [145]
    Zuo Y, Liu Y, Chen J, et al. The separation of cerium(Ⅳ) from nitric acid solutions containing thorium(Ⅳ) and lanthanides(Ⅲ) using pure C8mimPF6 as extracting phase[J]. Ind Eng Chem Res, 2008, 47(7): 2349-2355.
    [146]
    Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731): 28-29.
    [147]
    Wang J S, Chiu K. Metal extraction from solid matrices using a two-surfactant microemulsion in neat supercritical carbon dioxide[J]. Microchim Acta, 2009, 167(1): 61-65.
    [148]
    Mekki S, Wai C M, Billard I, et al. Cu(Ⅱ) extraction by supercritical fluid carbon dioxide from a room temperature ionic liquid using fluorinated beta-diketones[J]. Green Chem, 2005, 7(6): 421-423.
    [149]
    Pourmortazavi S M, Hajimirsadeghi S S, Kohsari I, et al. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of different metals from a solid matrix with cyanex 301 as a ligand[J]. J Chem Eng Data, 2004, 49(6): 1530-1534.
    [150]
    Yamini Y, Saleh A, Khajeh M. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(Ⅳ) and rhenium(Ⅶ) from a solid matrix using cyanex 301[J]. Sep Purif Technol, 2008, 61(1): 109-114.
    [151]
    Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals[J]. Phys Chem Chem Phys, 2006, 8(37): 4265-4279.
    [152]
    邱凌云,袁立永,谭绪凤,等.铀在离子液体中的物种及电化学行为研究进展[J].核化学与放射化学,2014,36(2):65-74.
    [153]
    Rao P R V, Venkatesan K A, Srinivasan T G. Studies on applications of room temperature ionic liquids[J]. Prog Nucl Energ, 2008, 50(2): 449-455.
    [154]
    Chen P Y, Hussey C L. Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethylammonium-bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid[J]. Electrochim Acta, 2004, 49(28): 5125-5138.
    [155]
    Tsuda T, Hussey C L, Luo H M, et al. Recovery of cesium extracted from simulated tank waste with an ionic liquid: water and oxygen effects[J]. J Electrochem Soc, 2006, 153(11): 171-176.
    [156]
    Bridges N J, Visser A E, Williamson M J, et al. Effects of gamma radiation on electrochemical properties of ionic liquids[J]. Radiochim Acta, 2010, 98(4): 243-247.
  • Related Articles

    [1]XU Ji-tang, YAO Ben-lin, XIAO Yi-qun, JIA Yan-hong, MENG Zhao-kai, LI Xun, YANG Ming-shuai, LI Bin, HE Hui, YE Guo-an. Research Progress in Lithium Thermal Reduction Technology for Oxide Spent Fuel[J]. Journal of Nuclear and Radiochemistry, 2024, 46(5): 409-424. DOI: 10.7538/hhx.2024.46.05.0409
    [2]HAN Zhe, GAO Yuan, WANG Chun-hui, QIU Jie, HE Hui, JIAO Cai-shan. Research Progress of Alkaline Process of Spent Nuclear Fuel Reprocessing[J]. Journal of Nuclear and Radiochemistry, 2024, 46(1): 1-19. DOI: 10.7538/hhx.2023.YX.2022076
    [3]ZHANG Chun-long, DONG Yong-chang, LYU Dan, SONG Feng-li, CHEN Si-zhe, XU Chun-yan, LIU Xin-hua. Research of Equipment Corrosion in Spent Fuel Reprocessing Plant of Japan and Enlightenment[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 575-588. DOI: 10.7538/hhx.2022.YX.2022023
    [4]QIN Zhi, FAN Fang-li, TIAN Wei, TAN Cun-min, WU Xiao-lei, HUANG Qing-gang, WANG Jie-ru, CHEN De-sheng, CAO Shi-wei, BAI Jing, YIN Xiao-jie, WANG Yang. Research on Spent Nuclear Fuel Cycle and Regeneration for Accelerator Driven Advanced Nuclear Energy System[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033
    [5]TAN Cun-min, CHEN De-sheng, WANG Jie-ru, HUANG Qing-gang, CAO Shi-wei, QIN Zhi. Head-End Process of Simulated Spent Fuels by Vol-Oxidation Treatment[J]. Journal of Nuclear and Radiochemistry, 2021, 43(5): 387-396. DOI: 10.7538/hhx.2021.YX.2020052
    [6]TANG Hao, REN Yi-ming, SHAO Lang, ZHONG Yi, GAO Rui. Development of Pyroprocessing of Spent Nuclear Fuel by Molten Salts Electrolysis[J]. Journal of Nuclear and Radiochemistry, 2017, 39(6): 385-396. DOI: 10.7538/hhx.2017.39.06.0385
    [7]LAN Tian, LUO Fang-xiang, XIAO Song-tao, LIU Xie-chun, YANG He, MENG Zhao-kai. Reductive Stripping of High Content Plutonium With Hydroxylamine Nitrate[J]. Journal of Nuclear and Radiochemistry, 2016, 38(3): 154-158. DOI: 10.7538/hhx.2016.38.03.0154
    [8]BAI Xue, CHANG Zhi-yuan. Analytical Methods of Dry Reprocessing Technology for Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2016, 38(3): 145-153. DOI: 10.7538/hhx.2016.38.03.0145
    [9]LI Jin-ying, SHI Lei, HU Yan-tao. Some Considerations on the Construction of a Spent Nuclear Fuel Reprocessing Plant in China[J]. Journal of Nuclear and Radiochemistry, 2011, 33(4): 204-210.
    [10]LIU Xue-gang. Research on Dry Reprocessing Technology of Spent Nuclear Fuel[J]. Journal of Nuclear and Radiochemistry, 2009, 31(专刊): 35-44.

Catalog

    Article views (1618) PDF downloads (5376) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return