• 右
  • 左
YU Jing, WANG Jian-long. Research Advances in Inorganic Adsorption Materials Processing for Uranium From Radioactive Wastewater[J]. Journal of Nuclear and Radiochemistry, 2018, 40(2): 81-88. DOI: 10.7538/hhx.2018.40.02.0081
Citation: YU Jing, WANG Jian-long. Research Advances in Inorganic Adsorption Materials Processing for Uranium From Radioactive Wastewater[J]. Journal of Nuclear and Radiochemistry, 2018, 40(2): 81-88. DOI: 10.7538/hhx.2018.40.02.0081

Research Advances in Inorganic Adsorption Materials Processing for Uranium From Radioactive Wastewater

More Information
  • A large amount of uranium-containing wastewater was produced with the development and application of nuclear energy. Adsorption method has received increasing attention due to the rapid development of new adsorptive materials. The adsorption method is widely used for concentrating uranium in wastewater. The adsorbents used for the adsorption of uranium from wastewater include inorganic minerals, metal oxide and carbon-based materials (such as activated carbon, carbon nanotube and graphene) and so on. The modification of adsorbents by grafting O- or N-containing functional groups, cross-liking, plasma, ion imprint and composite can enhance the adsorption capacity and selectivity. The mechanism for uranium adsorption is ion exchange and surface complexation. In this paper the research advances in uranium adsorption from wastewater are reviewed, and the future research direction is proposed based on the analysis of the present references.
  • [1]
    Melo D, Burkart W. Uranium: environmental pollution and health effects[M]. Holland: Elsevier B V, 2011.
    [2]
    王建龙,刘海洋.放射性废水的膜处理技术研究进展[J].环境科学学报,2013,33(10):2639-2656.
    [3]
    Wang J L, Chen C. Biosorbents for heavy metals removal and their future[J]. Biotechnol Adv, 2009, 27: 195-226.
    [4]
    Choppin G R. Actinide speciation in aquatic systems[J]. Mar Chem, 2006, 99: 83-92.
    [5]
    Arnold T, Baumann N, Krawczyk-Barsch E, et al. Identification of the uranium speciation in an underground acid mine drainage environment[J]. Geochim Cosmochim Ac, 2011, 75: 2200-2212.
    [6]
    Memon J R, Hallam K R, Bhanger M I, et al. Evaluation of sorption of uranium onto metakaolin using X-ray photoelectron and Raman spectroscopies[J].Anal Chim Acta, 2009, 631: 69-73.
    [7]
    刘晓宇,黎春,田文宇,等.铀酰离子吸附在高岭土基面的分子动力学模拟[J].物理化学学报,2011,27(1):59-64.
    [8]
    Xiao J, Chen Y T, Zhao W H, et al. Sorption behavior of U(Ⅵ) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid[J]. J Mol Liq, 2013, 188: 178-185.
    [9]
    Gajowiak A, Gladysz-Plaska A, Sternik D, et al. Sorption of uranyl ions on organosepiolite[J]. Chem Eng J, 2013, 219: 459-468.
    [10]
    Majdan M, Pikus S, Gajowiak A, et al. Characterization of uranium(Ⅵ) sorption by organobentonite[J]. Appl Surf Sci, 2010, 256: 5416-5421.
    [11]
    Xiao J, Chen Y T, Xu J B. Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U(Ⅵ)[J]. J Ind Eng Chem, 2014, 20: 2830-2839.
    [12]
    Yang S T, Zong P F, Hu J, et al. Fabrication of β-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U(Ⅵ)[J]. Chem Eng J, 2013, 214: 376-385.
    [13]
    郭亚丹,梁平,李效萌,等.改性累托石吸附溶液中铀U(Ⅵ)的研究[J].中国陶瓷,2014,50(7):24-28.
    [14]
    Ortaboy S, Acar E T, Atun G, et al. Performance of acrylic monomer based terpolymer/montmorillonite nanocomposite hydrogels for U(Ⅵ) removal from aqueous solutions[J]. Chem Eng Res Des, 2013, 91: 670-680.
    [15]
    陈卫军,林龙,沈江南,等.偕胺肟基聚丙烯腈/蒙脱土纳米复合材料海水铀的吸附规律研究[J].海洋技术,2011,30(3):17-20.
    [16]
    Guerra D L, Viana R R, Airoldi C. Use of raw and chemically modified hectorites as adsorbents for Th(Ⅳ), U(Ⅵ) and Eu(Ⅲ) uptake from aqueous solutions[J]. Desalination, 2010, 260: 161-171.
    [17]
    夏良树,周鹏飞,蒋海燕.腐殖酸-柱撑膨润土的制备及其对铀(Ⅵ)的吸附性能[J].南华大学:自然科学版,2013,27(3):20-24.
    [18]
    夏良树,张晓峰,黄欣.凹凸棒石与硫酸亚铁协同吸附铀[J].原子能科学技术,2013,47(11):1944-1950.
    [19]
    王光辉,胡苏杭,韩晨.半胱氨酸盐酸盐改性膨润土对铀的吸附研究[J].日用化学工业,2014,44(3):126-130.
    [20]
    Warchol J, Matlok M, Misaelides P, et al. Interaction of U(Ⅵ)aq with CHA-type zeolitic materials[J]. Micropor Mesopor Mat, 2012, 153: 63-69.
    [21]
    Sharma P, Tomar R. Synthesis and application of an analogue of mesolite for the removal of uranium(Ⅵ), thorium(Ⅳ), and europium(Ⅲ) from aqueous waste[J]. Micropor Mesopor Mat, 2008, 116: 641-652.
    [22]
    Stamberg K, Venkatesan K A, Vasudeva Rao P R. Surface complexation modeling of uranyl ion sorption on mesoporous silica[J]. Colloid Surface A, 2003, 221: 149-162.
    [23]
    王兴慧,朱桂茹,高从堦.短孔道介孔二氧化硅SBA-15对铀的吸附性能[J].化工学报,2013,64(7):2480-2487.
    [24]
    Vidya K, Gupta N M, Selvam P. Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves[J]. Mater Res Bull, 2004, 39: 2035-2048.
    [25]
    Kumar D, Bera S, Tripathi A K, et al. Uranium oxide nanoparticles dispersed inside the mesopores of MCM-48: synthesis and characterization[J]. Micropor Mesopor Mat, 2003, 66: 157-167.
    [26]
    Sadeghi S, Sheikhzadeh E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium(Ⅵ) ions from water samples[J]. J Hazard Mater, 2009, 163: 861-868.
    [27]
    Mishra A, Melo J S, Sen D, et al. Evaporation induced self assembled microstructures of silica nano-particles and streptococcus lactiscells as sorbent for uranium(Ⅵ)[J]. J Colloid Interf Sci, 2014, 414: 33-40.
    [28]
    林莹,何细文,高柏,等.粉煤灰对低质量浓度铀的吸附研究[J].世界核地质科学,2010,27(1):58-61.
    [29]
    Simon F G, Biermann V, Peplinski B. Uranium removal from groundwater using hydroxyapatite[J]. Appl Geochem, 2008, 23: 2137-2145.
    [30]
    Baybas D, Ulusoy U. Polyacrylamide-hydroxyapatite composite: preparation, characterization and adsorptive features for uranium and thorium[J]. J Solid State Chem, 2012, 194: 1-8.
    [31]
    Li D, Kaplan D I. Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe(hydr)oxides: a review[J]. J Hazard Mater, 2012, 243: 1-18.
    [32]
    Fan F L, Qin Z, Bai J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4/SiO2 composite particles[J]. J Environ Radioact, 2012, 106: 40-46.
    [33]
    Liu M C, Chen C L, Wen T, et al. Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(Ⅵ)[J]. Dalton T, 2014, 43: 7050-7056.
    [34]
    Song W C, Liu M C, Hu R, et al. Water-soluble polyacrylamide coated   Fe3O4 magnetic composites for high-efficient enrichment of U(Ⅵ) from radioactive wastewater[J]. Chem Eng J, 2014, 246: 268-276.
    [35]
    Zhao Y G, Li J X, Zhao L P, et al. Synthesis of amidoxime-functionalized Fe3O4/SiO2 core-shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chem Eng J, 2014, 235: 275-283.
    [36]
    胡建邦,袁亚莉,唐琼,等.氨基化改性Fe3O4/SiO2复合磁性材料的制备以及对铀(Ⅵ)的吸附研究[J].应用化工,2012,41(12):2067-2074.
    [37]
    杨淼,张光亮,沈杏,等.磷酸化聚乙烯醇修饰磁性纳米粒子对铀酰的吸附性能研究[J].广东化工,2013,246:5-6.
    [38]
    Fan Q H, Li P, Chen Y F, et al. Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(Ⅵ) from aqueous solution[J]. J Hazard Mater, 2011, 192: 1851-1859.
    [39]
    彭国文,丁德馨,胡南,等.纳米Fe3O4负载啤酒酵母菌对铀的吸附性能与机理[J].中国有色金属学报,2012,22(2):604-610.
    [40]
    胡军,周跃明,梁喜珍,等.纳米氧化铁对铀(Ⅵ)吸附性能的研究[J].光谱实验室,2011,28(2):718-722.
    [41]
    贾继云,袁亚莉,黄芬,等.Fe3O4磁流体对铀(Ⅳ)的吸附研究[J].南华大学学报:自然科学版,2011,25(2):66-69.
    [42]
    熊国宣,黄海清,张志宾.多孔纳米钡铁氧体制备及其吸附铀的性能研究[J].原子能科学技术,2012,46(9):1041-1044.
    [43]
    Yusan S D, Erenturk S A. Sorption behaviors of uranium(Ⅵ) ions on α-FeOOH[J]. Desalination, 2011, 269: 58-66.
    [44]
    Yusan S D, Akyil S. Sorption of uranium(Ⅵ) from aqueous solutions by akaganeite[J]. J Hazard Mater, 2008, 160: 388-395.
    [45]
    Yusan S D, Erenturk S A. Adsorption equilibrium and kinetics of U(Ⅵ) on beta type of akaganeite[J]. Desalination, 2010, 263: 233-239.
    [46]
    谢水波,冯敏,杨金辉,等.腐殖酸改性针铁矿对铀U(Ⅵ)的吸附性能及机理研究[J/OL].环境科学学报,2014-04-04,http:∥www.cnki.net/kcms/doi/10.13671/j.hjkxxb.2014.0644.html.
    [47]
    Katsoyiannis I A. Carbonate effects and pH dependence of uranium sorption onto bacteriogenic iron oxides: kinetic and equilibrium studies[J]. J Hazard Mater, 2007, B139: 31-37.
    [48]
    Singer D M, Chatman S M, Ilton E S, et al. Identification of simultaneous U(Ⅵ) sorption complexes and U(Ⅳ) nanoprecipitates on the magnetite (111) surface[J]. Environ Sci Technol, 2012, 46: 3811-3820.
    [49]
    Huber F, Schild D, Vitova T, et al. U(Ⅵ) removal kinetics in presence of synthetic magnetite nano particles[J]. Geochim Cosmochim Ac, 2012, 96: 154-173.
    [50]
    Konstantinou M, Pashalidis I. Competitive sorption of Cu(Ⅱ), Eu(Ⅲ) and U(Ⅵ) ions on TiO2 in aqueous solutions:a potentiometric study[J]. Colloid Surface A, 2008, 324: 217-221.
    [51]
    张麟熹,孙玉珍,罗明标.磷酸三丁酯修饰Ti纳米晶须应用于吸附铀酰离子[J].复合材料学报,2011,28(3):96-102.
    [52]
    常阳,张麟熹,罗明标,等.钛纳米管的制备和对铀离子的吸附[J].材料研究学报,2010,24(4):424-428.
    [53]
    Abbasizadeh S, Keshtkar A R, Mousavian M A. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(Ⅵ) and thorium(Ⅳ) removal from aqueous solution[J]. Chem Eng J, 2013, 220: 161-171.
    [54]
    Abbasizadeh S, Keshtkar A R, Mousavian M A. Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups[J]. J Ind Eng Chem, 2014, 20: 1656-1664.
    [55]
    Das S, Pandey A K, Athawale A A, et al. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media[J]. J Hazard Mater, 2011, 186: 2051-2059.
    [56]
    Fan F Z, Qin Z. Sorption of uranium(Ⅵ) from aqueous solution onto magnesium silicate hollow spheres[M]. IMP and HIRFL Annual Report, 2010: 79-80.
    [57]
    杨鑫,任雪梅,吴西林,等.纳米球状碳酸钙对水中铀酰离子的吸附[J].核化学与放射化学,2012,34(6):337-340.
    [58]
    Banerjee C, Dudwadkar N, Tripathi S C, et al. Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste[J]. J Hazard Mater, 2014, 280: 63-70.
    [59]
    Sun Y B, Yang S T, Sheng G D, et al. Comparison of U(Ⅵ) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina[J]. Sep Purif Technol, 2011, 83: 196-203.
    [60]
    Bonato M, Ragnarsdottir K V, Allen G C. Removal of uranium(Ⅵ), lead(Ⅱ) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy[J]. Water Air Soil Poll, 2012, 223: 3845-3857.
    [61]
    李兴亮,宋强,刘碧君,等.炭材料对铀的吸附[J].化学进展,2011,23(7):1446-1453.
    [62]
    李小燕,张明,刘义保,等.花生壳活性炭吸附溶液中的铀[J].化工环保,2013,33(3):202-205.
    [63]
    Ahmed S H, Sharaby C M, Gammal E M E. Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon[J]. Hydrometallurgy, 2013, 134-135: 150-157.
    [64]
    Lei F A, Fan F L, Bai J, et al. Sorption of uranium with functionalized nanoporous carbons[M]. IMP and HIRFL Annual Report, 2009: 73-74.
    [65]
    Yakout S M, Metwally S S, El-Zakla T. Uranium sorption onto activated carbon prepared from rice straw: competition with humic acids[J]. Appl Surf Sci, 2013, 280: 745-750.
    [66]
    Li B, Ma L J, Tian Y, et al. A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium[J]. J Hazard Mater, 2014, 271: 41-49.
    [67]
    Liu Y H, Wang Y Q, Zhang Z B, et al. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent[J]. Appl Surf Sci, 2013, 273: 68-74.
    [68]
    Kumar S, Loganathan V A, Gupta R B, et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. J Environ Manage, 2011, 92: 2504-2512.
    [69]
    Zhao Y S, Liu C X, Feng M, et al. Solid phase extraction of uranium(Ⅵ) onto benzoylthiourea anchored activated carbon[J]. J Hazard Mater, 2010, 176: 119-124.
    [70]
    Fasfous I I, Dawoud J N. Uranium(Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Appl Surf Sci, 2012, 259: 433-440.
    [71]
    Schierz A, Zanker H. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption[J]. Environ Pollut, 2009, 157: 1088-1094.
    [72]
    Sun Y B, Yang S T, Sheng G D, et al. The removal of U(Ⅵ) from aqueous solution by oxidized multiwalled carbon nanotubes[J]. J Environ Radioact, 2012, 105: 40-47.
    [73]
    Deb A K S, Ilaiyaraja P, Ponraju D, et al. Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption[J]. J Radioanal Nucl Chem, 2012, 291: 877-883.
    [74]
    刘淑娟,李金英,罗明标,等.甲醛改性多壁碳纳米管吸附铀的性能研究[J].原子能科学技术,2013,47(1):7-13.
    [75]
    刘淑娟,马建国,花榕,等.枝状聚合物修饰碳纳米管对铀吸附性能研究[J].东华理工大学学报:自然科学版,2012,35(4):388-393.
    [76]
    Zare F, Ghaedi M, Daneshfar A, et al. Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: kinetic and thermodynamic study[J]. Chem Eng J, 2015, 273: 296-306.
    [77]
    Wang Y, Gu Z X, Yang J J, et al. Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(Ⅵ)[J]. Appl Surf Sci, 2014, 320: 10-20.
    [78]
    Li Z J, Chen F, Yuan L Y, et al. Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chem Eng J, 2012, 210: 539-546.
    [79]
    Chen S P, Hong J X, Yang H X, et al. Adsorption of uranium (Ⅵ) from aqueous solution using a novel graphene oxide-activated carbon felt composite[J]. J Environ Radioactiv, 2013, 126: 253-258.
    [80]
    张伟强,马建国,刘淑娟,等.改性石墨烯海绵材料对铀的吸附研究[J].东华理工大学学报:自然科学版,2014,37(2):230-235.
    [81]
    Shao D D, Li J X, Wang X K. Poly(amidoxime) reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater[J]. Sci China Chem, 2014, 57: 1449-1458.
    [82]
    Song W C, Shao D D, Lu S S, et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Sci China Chem, 2014, 57: 1291-1299.
    [83]
    周丽,邓慧萍,万俊力,等.石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能[J].化学进展,2013,2(1):145-155.
    [84]
    Ren X M, Chen C L, Nagatsu M, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review[J]. Chem Eng J, 2011, 170: 395-410.
    [85]
    Zong P F, Gou J Y. Rapid and economical synthesis of magnetic multiwalled carbon nanotube/iron oxide composite and its application in preconcentration of U(Ⅵ)[J]. J Mol Liq, 2014, 195: 92-98.
    [86]
    Tan L C, Liu Q, Jing X Y, et al. Removal of uranium(Ⅵ) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites[J]. Chem Eng J, 2015, 273: 307-315.
    [87]
    Zong P F, Wang S F, Zhao Y L, et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(Ⅵ) from aqueous solutions[J]. Chem Eng J, 2013, 220: 45-52.
    [88]
    Sun Y B, Ding C C, Cheng W C, et al. Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. J Hazard Mater, 2014, DOI: 10.1016/j.jhazmat.2014.08.023.
    [89]
    Zhao Y G, Li J X, Zhang S W, et al. Efficient enrichment of uranium(Ⅵ) on amidoximated magnetite/graphene oxide composites[J]. RSC Adv, 2013, 3: 18952-18959.
    [90]
    Yu S J, Wang X X, Yang S T, et al. Interaction of radionuclides with natural and manmade materials using XAFS technique[J]. Sci China Chem, 2017, 60: 170-187.
    [91]
    Wang X X, Yu S J, Jin J, et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions[J]. Sci Bull, 2016, 61: 1583-1593.
    [92]
    杜毅,王建,王宏青,等.人工纳米材料吸附放射性核素的机理研究[J].农业环境科学学报,2016,35:1837-1847.
    [93]
    王祥学,李洁,于淑君,等.放射性核素在天然粘土和人工纳米材料吸附机理研究[J].核化学与放射化学,2015,37(5):329-340.
  • Related Articles

    [1]LIU Peng, RUAN Hui, XUE Yun, MA Fu-qiu. Research Advances in Graphene Oxide Composites for Uranium Adsorption[J]. Journal of Nuclear and Radiochemistry, 2023, 45(2): 102-118. DOI: 10.7538/hhx.2023.45.02.0102
    [2]XU Qiang-wei, FANG Sheng, LIU Chen, LONG Hao-qi, CHEN Xi, WANG Bo, XU Yu-wei, ZHOU Duo. Redox Behavior of Se on Iron-Based Materials in Simulated Geological Disposal Environment of HLW[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 627-634. DOI: 10.7538/hhx.2022.YX.2021093
    [3]XIONG Shun-shun, YAN Zhao-tong, LIU Bo-yu, LIU Qiang, WU Xiao-nan, GONG You-jin, YANG Chu-ting, WANG Xiao-lin. Research Progress on Radioactive Noble Gas Separation and Separation Materials[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 478-497. DOI: 10.7538/hhx.2020.YX.2020093
    [4]ZHAO Min, FAN Fu-you, SUN Ya-lou, TANG Jun-hao, HU Ya-meng, PAN Duo-qiang, WU Wang-suo. Application of Functional Nanomaterials on Purification of Uranium-Containing Wastewater[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 311-327. DOI: 10.7538/hhx.2019.41.04.0311
    [5]LYU Zhi-min, YANG Shi-min, CHEN Lei, CHEN Chang-lun. High Performance of MOF/Carbon Composites for U(Ⅵ) Adsorption From Aqueous Solution[J]. Journal of Nuclear and Radiochemistry, 2019, 41(2): 217-227. DOI: 10.7538/hhx.2019.41.02.0217
    [6]LOU Li-shan, LIU Rui-qin, WEI Yue-zhou. Adsorption Characteristics of Zr(Ⅳ) From Nitric Acid Solution Using a Silica-Based Macroporous HDEHP Adsorbent[J]. Journal of Nuclear and Radiochemistry, 2018, 40(2): 121-126. DOI: 10.7538/hhx.2017.YX.2017012
    [7]ZHU Rui-zhi, LI Li-li, ZHU Liu-chao, ZHAO Li-fei, ZHAO Yong-gang. Adsorption of Uranium(Ⅵ) on Micro Ceramic Materials[J]. Journal of Nuclear and Radiochemistry, 2017, 39(5): 377-384. DOI: 10.7538/hhx.2017.YX.2016051
    [8]ZHAO Yan-hong, PAN She-qi, LI Chang-cheng, ZHANG Hong-tao. Leaching Experiment of Alkali-Activated Cementitious Materials Solidified Forms of Radioactive Incineration Ash[J]. Journal of Nuclear and Radiochemistry, 2010, 32(5): 268-273.
    [9]LI Hui-bo, YE Guo-an, WANG Xiao-rong, LIN Can-sheng, SU Zhe, LIU Zhan-yuan, ZHAO Xing-hong. Adsorption Performance and Mechanism of Pu(Ⅳ) by Silica-Based Quaternary Ammonium Material[J]. Journal of Nuclear and Radiochemistry, 2010, 32(2): 65-69.
    [10]STUDIES OF SORPTION AND MIGRATION OF RADIOACTIVE IODINE ON GEOLOGICAL MATERIALS[J]. Journal of Nuclear and Radiochemistry, 1991, 13(2): 91-91.

Catalog

    Article views (746) PDF downloads (4120) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return