Citation: | WU Kai-ge, SHEN Xing-hai. Assembly of UO2(CMPO)3(NO3)2 and Mechanism of Uranyl Extraction by CMPO in Ionic Liquid[J]. Journal of Nuclear and Radiochemistry, 2021, 43(2): 136-141. DOI: 10.7538/hhx.2020.YX.2019057 |
[1] |
Hallett J, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chem Rev, 2011, 111(5): 3508-3576.
|
[2] |
Zhang S, Sun J, Zhang X, et al. Ionic liquid-based green processes for energy production[J]. Chem Soc Rev, 2014, 43(22): 7838-7869.
|
[3] |
Wang L, Guo Q, Lee M. Recent advances in metal extraction improvement: mixture systems consisting of ionic liquid and molecular extractant[J]. Sep Purif Technol, 2019, 210: 292-303.
|
[4] |
刘海望,杨涛,陈庆德,等.离子液体体系的萃取行为及其在乏燃料后处理中的应用前景[J].核化学与放射化学,2015,37(5):286-309.
|
[5] |
Tamate R, Hashimoto K, Ueki T, et al. Block copolymer self-assembly in ionic liquids[J]. Phys Chem Chem Phys, 2018, 20(39): 25123-25139.
|
[6] |
Hao J, Zemb T. Self-assembled structures and chemical reactions in room-temperature ionic liquids[J]. Curr Opin Colloid Interface Sci, 2007, 12(3): 129-137.
|
[7] |
Greaves T, Drummond C. Ionic liquids as amphiphile self-assembly media[J]. Chem Soc Rev, 2008, 37(8): 1709-1726.
|
[8] |
Greaves T, Drummond C. Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids[J]. Chem Soc Rev, 2013, 42(3): 1096-1120.
|
[9] |
Zhang J, Peng L, Han B. Amphiphile self-assemblies in supercritical CO2 and ionic liquids[J]. Soft Matter, 2014, 10(32): 5861-5868.
|
[10] |
Li Q, Chen X. Lyotropic liquid crystals fabricated in ionic liquids[J]. Chin Sci Bull, 2016, 62(6): 478-485.
|
[11] |
Lu F, Zheng L. Amphiphile self-assembly based on ionic liquids[J]. Chin Sci Bull, 2016, 62(6): 546-562.
|
[12] |
Shen X, Chen Q, Zhang J, et al. Supramolecular structures in the presence of ionic liquids[M]∥Kokorin A. Ionic liquids. Rijeka, Croatia: Intech. 2011: 427-482.
|
[13] |
Zech O, Kunz W. Conditions for and characteristics of nonaqueous micellar solutions and microemulsions with ionic liquids[J]. Soft Matter, 2011, 7(12): 5507-5513.
|
[14] |
Fong C, Le T, Drummond C. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design[J]. Chem Soc Rev, 2012, 41(3): 1297-1322.
|
[15] |
Rao V, Mandal S, Ghosh S. Aggregation behavior of Triton X-100 with a mixture of two room-temperature ionic liquids: can we identify the mutual penetration of ionic liquids in ionic liquid containing micellar aggregates?[J]. J Phys Chem B, 2012, 116(47): 13868-13877.
|
[16] |
Gayet F, Marty J, Brulet A, et al. Vesicles in ionic liquids[J]. Langmuir, 2011, 27(16): 9706-9710.
|
[17] |
Hao J, Song A, Wang J, et al. Self-assembled structure in room-temperature ionic liquids[J]. Chem Eur J, 2005, 11(13): 3936-3940.
|
[18] |
Rao C, Rout A, Venkatesan K. Europium(Ⅲ) complexation behaviour in an alkyl ammonium ionic liquid medium containing neutral extractants[J]. Sep Purif Technol, 2019, 213: 545-552.
|
[19] |
Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle[J]. Chem Soc Rev, 2017, 46(23): 7229-7273.
|
[20] |
Sun T, Chen Q, Shen X. Investigation of selective extraction of UO2+2 from aqueous solution by CMPO and TBP in ionic liquids[J]. Acta Phys-Chim, 2015, 31: 32-38.
|
[21] |
吴京珂,陈庆德,沈兴海.CMPO-离子液体萃取分离铀(Ⅵ)体系的电化学性质[J].物理化学学报,2013,29:1705-1711.
|
[22] |
Shi J, Yuan W, Dong Z, et al. Extraction behavior of Eu3+ and UO2+2 using CMPO/[Cnmim][NTf2] systems[J]. Chin J Inorg Chem, 2016, 32(3): 414-420.
|
[23] |
Wu Q, Sun T, Meng X, et al. Thermodynamic insight into the solvation and complexation behavior of U(Ⅵ) in ionic liquid: binding of CMPO with U(Ⅵ) studied by optical spectroscopy and calorimetry[J]. Inorg Chem, 2017, 56(5): 3014-3021.
|
[24] |
Chen B, Wu K, Yang Y, et al. Uranium capture strategy based on self-assembly in hydroxyl-functionalized ionic liquids extraction system[J]. Chem Commun, 2019, 55(48): 6894-6897.
|
[25] |
Bonhöte P, Dias A, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg Chem, 1996, 35(5): 1168-1178.
|
[26] |
Wilkes J, Zaworotko M. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J Chem Soc, Chem Commun, 1992, 13: 965-967.
|
[27] |
Anderson J, Pino V, Hagberg E, et al. Surfactant solvation effects and micelle formation in ionic liquids[J]. Chem Commun, 2003(19): 2444-2445.
|
[28] |
Li N, Zhang S, Zheng L, et al. Aggregation behavior of long-chain ionic liquids in an ionic liquid[J]. Phys Chem Chem Phys, 2008, 10(30): 4375-4377.
|
[29] |
Zhang S, Li N, Zheng L, et al. Aggregation behavior of pluronic triblock copolymer in 1-butyl-3-methylimidazolium type ionic liquids[J]. J Phys Chem B, 2008, 112(33): 10228-10233.
|
[30] |
Wu J, Li N, Zheng L, et al. Aggregation behavior of polyoxyethylene (20) sorbitan monolaurate (Tween 20) in imidazolium based ionic liquids[J]. Langmuir, 2008, 24(17): 9314-9322.
|
[31] |
Gao Y, Li N, Li X. Microstructures of micellar aggregations formed within 1-butyl-3-methylimidazolium type ionic liquids[J]. J Phys Chem B, 2009, 113(1): 123-130.
|
[32] |
Dietz M, Stepinski D. Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids[J]. Talanta, 2008, 75(2): 598-603.
|
[33] |
Billard I, Ouadi A, Jobin E, et al. Understanding the extraction mechanism in ionic liquids: UO2+2/HNO3/TBP/C4-mimTf2N as a case study[J]. Solvent Extr Ion Exch, 2011, 29(4): 577-601.
|
[34] |
Bell T, Ikeda Y. The application of novel hydrophobic ionic liquids to the extraction of uranium(Ⅵ) from nitric acid medium and a determination of the uranyl complexes formed[J]. Dalton Trans, 2011, 40(39): 10125-10130.
|
[35] |
Dietz M, Dzielawa J, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem, 2003, 5(6): 682-685.
|
[36] |
刘海望,陈庆德,沈兴海.三丁基氧化膦-离子液体体系萃取UO2(NO3)2的机理和选择性[J].物理化学学报,2015,31(5):843-851.
|
1. |
史策,熊世杰,沈兴海. 基于离子液体萃取体系宏观超分子组装的锶分离. 核化学与放射化学. 2022(01): 52-60 .
![]() | |
2. |
史策,沈兴海. 萃取过程中微观到宏观的多尺度超分子组装——离子液体的特异性功能. 核化学与放射化学. 2022(01): 1-14 .
![]() |