• 右
  • 左
WANG Chun-li, YANG Xiao-yu, XIAN Dong-fan, ZHU Zhao-wen. Rethinking on Influence of Temperature on Diffusion of 75Se(Ⅳ) in Beishan Granite[J]. Journal of Nuclear and Radiochemistry, 2023, 45(4): 284-294. DOI: 10.7538/hhx.2023.YX.2022064
Citation: WANG Chun-li, YANG Xiao-yu, XIAN Dong-fan, ZHU Zhao-wen. Rethinking on Influence of Temperature on Diffusion of 75Se(Ⅳ) in Beishan Granite[J]. Journal of Nuclear and Radiochemistry, 2023, 45(4): 284-294. DOI: 10.7538/hhx.2023.YX.2022064

Rethinking on Influence of Temperature on Diffusion of 75Se(Ⅳ) in Beishan Granite

More Information
  • The researches on the diffusion of key nuclide Se in Beishan granite, which is the pre-selected surrounding rock of China’s high-level radioactive waste geological repository, were summarized, including research methods, relevant data obtained and work to be carried out. Moreover, the influence of temperature on the diffusion of 75Se(Ⅳ) in Beishan granite and the possible influence mechanism were analyzed emphatically, in order to provide useful references for domestic peers.
  • [1]
    Soler J M, Landa J, Havlova V, et al. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site[J]. J Contam Hydrol, 2015, 179: 89-101.
    [2]
    Chapman N, Hooper A. The disposal of radioactive wastes underground[J]. Proceedings of the Geologists’ Association, 2012, 123(1): 46-63.
    [3]
    Agbogun H M D, Al T A, Hussein E M A. Three dimensional imaging of porosity and tracer concentration distributions in a dolostone sample during diffusion experiments using X-ray micro-CT[J]. J Contam Hydrol, 2013, 145(1): 44-53.
    [4]
    Grambow B. Mobile fission and activation products in nuclear waste disposal[J]. J Contam Hydrol, 2008, 102(3-4): 180-186.
    [5]
    王驹.中国高放废物地质处置21世纪进展[J].原子能科学技术,2019,53(10):2072-2082.
    [6]
    Charlet L, Kang M, Bardelli F, et al. Nanocomposite pyrite-greigite reactivity toward Se(Ⅳ)/Se(Ⅵ)[J]. Environ Sci Technol, 2012, 46(9): 4869-4876.
    [7]
    Bennett D G, Gens R. Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion[J]. J Nucl Mater, 2008, 379(1-3): 1-8.
    [8]
    Cui Y J, Tang A M. On the chemo-thermo-hydro-mechanical behaviour of geological and engineered barriers[J]. J Rock Mechan Geotech Eng, 2013, 5(3): 169-178.
    [9]
    Klubertanz G, Folly M, Hufschmied P, et al. Impact of the thermal load on the farfield and galleries of a HLW-repository[J]. Phys Chem Earth, Parts A/B/C, 2008, 33: S457-S461.
    [10]
    Simonyan A V, Behrens H, Dultz S. Diffusive transport of water in porous feldspars from granitic saprolites: in situ experiments using FTIR spectroscopy[J]. Geochim Et Cosmochim Acta, 2009, 73(23): 7019-7033.
    [11]
    Savoye S, Goutelard F, Beaucaire C, et al. Effect of temperature on the containment properties of argillaceous rocks: the case study of Callovo-Oxfordian claystones[J]. J Contam Hydrol, 2011, 125(1-4): 102-112.
    [12]
    Joseph C, Van Loon L R, Jakob A, et al. Diffusion of U(Ⅵ) in Opalinus clay: influence of temperature and humic acid[J]. Geochim Et Cosmochima Acta, 2013, 109: 74-89.
    [13]
    Sanchez F G, Van Loon L R, Gimmi T, et al. Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite[J]. Appl Geochem, 2008, 23(12): 3840-3851.
    [14]
    Chen T, Sun M, Li C, et al. The influence of temperature on the diffusion of 125I- in Beishan granite[J]. Radiochim Acta, 2010, 98(5): 301-305.
    [15]
    Li C, Zheng Z, Liu X Y, et al. The diffusion of Tc-99 in Beishan granite: temperature effect[J]. World J Nucl Sci Technol, 2013, 3(1): 33-39.
    [16]
    王春丽.75Se(Ⅳ)在北山花岗岩中的扩散和吸附行为研究[D].北京:北京大学,2016.
    [17]
    Wang X Y, Chen T, Wang C L, et al. Adsorption and diffusion of some important radionuclides in Beishan granites and Gaomiaozi bentonites[J]. Sci Sinica Chim, 2020, 50(11): 1585-1599.
    [18]
    Van Loon L R, Mibus J. A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies[J]. Appl Geochem, 2015, 59: 85-94.
    [19]
    Wang X K, Montavon G, Grambow B. A new experimental design to investigate the concentration dependent diffusion of Eu(Ⅲ) in compacted bentonite[J]. J Radioanal Nucl Chem, 2003, 257(2): 293-297.
    [20]
    Bazer-Bachi F, Descostes M, Tevissen E, et al. Characterization of sulphate sorption on Callovo-Oxfordian argillites by batch, column and through-diffusion experiments[J]. Phys Chem Earth, 2007, 32(8-14): 552-558.
    [21]
    Wang C L, Yang X Y, He J G, et al. The diffusion of 75Se(Ⅳ) in Beishan granite: temperature, oxygen condition and ionic strength effects[J]. Radiochim Acta, 2018, 107(1): 39-54.
    [22]
    Wang C L, Yang X Y, Wei F X, et al. The influence of pH on diffusion of 75Se(Ⅳ) in Beishan granite[J]. J Radioanal Nucl Chem, 2018, 319(1): 365-377.
    [23]
    He J G, Ma B, Kang M L, et al. Migration of 75Se(Ⅳ) in crushed Beishan granite: effects of the iron content[J]. J Hazard Mater, 2017, 324: 564-572.
    [24]
    Yang X Y, Ge X K, He J G, et al. Effects of mineral compositions on matrix diffusion and sorption of 75Se(Ⅳ) in granite[J]. Environ Sci Technol, 2018, 52(3): 1320-1329.
    [25]
    温瑞媛,高宏成,蒋成华,等.裂片核素在岩石中的迁移研究之1:75Se在花岗岩和石灰岩中的扩散行为[J].核化学与放射化学,1991,13(4):213-217.
    [26]
    温瑞媛,高宏成,王祥云,等.裂片核素在岩石中的迁移研究之4:75Se在花岗岩中的吸附、扩散、渗透和数学模型[J].核化学与放射化学,1994,16(4):193-198.
    [27]
    Wen R Y, Gao H C, Wang X Y, et al. Diffusion of fission fragment nuclides in granite[J]. Radiochim Acta, 1997, 76: 137-142.
    [28]
    Wu T, Wang Z F, Li Q M, et al. Re(Ⅶ) diffusion in bentonite: effect of organic compounds, pH and temperature[J]. Appl Clay Sci, 2016, 127-128: 10-16.
    [29]
    Zhu J B, Wang X Y, Chen T, et al. Chemical speciation code CHEMSPEC(C++) and its applications[J]. Scientia Sinica Chimica, 2012, 42(6): 856.
    [30]
    Zhao X G, Zhao Z, Guo Z, et al. Influence of thermal treatment on the thermal conductivity of Beishan granite[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2055-2074.
    [31]
    Harvey K B. Measurement of diffusive properties of intact rock, AECL-11439, COG-95-456-I[R]. Canada: Whiteshell Laboratories, 1996.
    [32]
    Liu J S, Neretnieks I. Data and uncertainty assessment-matrix diffusivity and porosity in situ, SKB Rapport R-06-111[R]. Sweden: SKB, 2006.
    [33]
    左建平,周宏伟,方园,等.甘肃北山地区深部花岗岩的热开裂试验研究[J].岩石力学与工程学报,2011,30(6):1107-1115.
    [34]
    贺琦.热-力作用下北山花岗岩裂隙扩展过程及机理研究[D].贵阳:贵州大学,2022.
    [35]
    赵阳升,万志军,张渊,等.岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
    [36]
    Wang H F, Bonner B P, Carlson S R, et al. Thermal stress cracking in granite[J]. J Geophys Res, 1989, 94(B2): 1745-1758.
    [37]
    陈颙,吴晓东,张福勤.岩石热开裂的试验研究[J].科学通报,1999,44:880-883.
    [38]
    Wang F, Konietzky H, Frühwirt T, et al. Laboratory testing and numerical simulation of properties and thermal-induced cracking of Eibenstock granite at elevated temperatures[J]. Acta Geotech, 2020, 15: 2259-2275.
    [39]
    贺琦,陈世万,杨福波,等.不同温度条件下北山花岗岩巴西劈裂试验裂隙扩展过程研究[J/OL].长江科学院院报,2022.

Catalog

    Article views (233) PDF downloads (322) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return