Citation: | SUN Wei-jie, WANG Qian, WU Tong, HUANG Huan-hui, ZHOU Qing-zhi. Comparison of Fenton Method and Microwave Synergistic Fenton Method in Radioactive TBP/OK Waste Liquid Treatment[J]. Journal of Nuclear and Radiochemistry, 2024, 46(5): 483-489. DOI: 10.7538/hhx.2024.46.05.0483 |
Radioactive TBP/kerosene(OK) organic waste liquid is produced in the process of uranium purification and spent fuel retreatment. In order to avoid the safety risks caused by the accumulation of radioactive organic waste liquid over the years, it is urgent to treat it. In this paper, the conventional Fenton oxidation method and microwave synergistic Fenton method were used to treat simulated radioactive TBP/OK waste liquid, and the effects of mass fraction of Fenton’s reagent ρ(Fe2+) and ρ(H2O2), initial pH and oxidation time(t) on the removal of chemical oxygen demand(COD) was experimentally investigated. The results of the conventional Fenton oxidation method show that: at the optimal process conditions, ρ(Fe2+)=20 mg/L, ρ(Fe2+)/ρ(H2O2)=1∶10, initial pH=1.90, t=15 min, the COD removal can reach up to 72.01%; the most important factor is the ratio of ρ(Fe2+)/ρ(H2O2), followed by ρ(Fe2+), initial pH, and oxidation time. The microwave synergistic Fenton method is superior to the conventional heating Fenton method, and even better than the conventional Fenton oxidation method, when under the same optimal reaction conditions. As for the microwave synergistic Fenton method, the COD removal can be increased to 95.80%. The dosage of Fenton reagent is also reduced from ρ(Fe2+)=20 mg/L, ρ(H2O2)=200 mg/L to ρ(Fe2+)=10 mg/L, ρ(H2O2)=100 mg/L. It can be seen that the microwave synergistic Fenton method not only further improves the COD removal, but also reduces the dosage of Fenton reagent.
[1] |
冯文东,王瑞英,叶盾毅,等.放射性废有机相(TBP/OK)处理技术综述[J].环境工程,2019,37(5):92-98,104.
|
[2] |
Wattal P K. Indian programme on radioactive waste management[J]. Sadhana, 2013, 38(5): 849-857. doi: 10.1007/s12046-013-0170-0
|
[3] |
徐立国,张锡东,赵玲君,等.TBP/煤油热解焚烧装置的改进及冷试验证[J].辐射防护,2020,40(5):372-378.
|
[4] |
闫晓俊,柳兆峰,郭喜良,等.放射性废树脂湿法氧化工艺实验室热试验证[J].辐射防护,2021,41(6):530-535.
|
[5] |
Vaudey C E, Renou S, Porco J, et al. NOCHAR polymers: an aqueous and organic liquid solidification process for Cadarache LOR (Liquides Organiques Radioactifs)-13195[C]//Jim F, Jim G. WM 2013 Conference, February 24-28, 2013, Phoenix, Arizona, USA. Phoenix: Curran Associates, Inc, 2013.
|
[6] |
孙丹丹,王鑫,董文曙.核电厂放射性废液水泥固化体的制备[J].核化学与放射化学,2022,44(4):467-473. doi: 10.7538/hhx.2022.YX.2021108
|
[7] |
Nakagawa A, Sone T, Sasaki T, et al. Performance of steam reforming technology in a long term treatment of waste TBP/dodecane-11079[C]//Jim G. WM 2011 Conference, February 27, March 3, 2011, Phoenix, Arizona, USA. Phoenix: Curran Associates, Inc, 2011.
|
[8] |
丁欢,李军,金央,等.磷酸三丁酯在碱中的降解研究[J].化学工程师,2015,29(11):51-53,60.
|
[9] |
Pliego G, Zazo J A, Garcia-Muñoz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview[J]. Crit Rev Environ Sci Technol, 2015, 45(24): 2611-2692. doi: 10.1080/10643389.2015.1025646
|
[10] |
赵斌,云桂春,叶裕才.放射性废有机溶剂(TBP/OK)稳定化技术研究[J].辐射防护,1996,16(1):38-43.
|
[11] |
Wang X J, Song Y, Mai J S. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate[J]. J Hazard Mater, 2008, 160(2-3): 344-348. doi: 10.1016/j.jhazmat.2008.02.117
|
[12] |
Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Crit Rev Environ Sci Technol, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564
|
[13] |
Wang C, Yu G, Wang J. Fenton oxidative degradation of spent organic solvents from nuclear fuel reprocessing plant[J]. Prog Nucl Energ, 2020: 130.
|
[14] |
Shen X, Cai Z, Hu J, et al. Highly efficient microwave-assisted Fenton degradation of toluene nitration wastewater over microwave-responsive catalyst of Fe3O4-BiOCl[J]. Chemistry Select, 2022, 7(33): e202200804.
|
[15] |
Li S, Zhang G, Zhang W, et al. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid(PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst[J]. Chem Eng J, 2017, 326: 756-764. doi: 10.1016/j.cej.2017.06.037
|
[16] |
Liu S T, Huang J, Ye Y, et al. Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution[J]. Chem Eng J, 2013, 215: 586-590.
|
[17] |
Zhang A, Gu Z, Chen W, et al. Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by microwave–Fenton process[J]. Environ Sci Pollut Res, 2018, 25(29): 28907-28916. doi: 10.1007/s11356-018-2900-7
|
[18] |
Wang H, Zhao Z, Zhang X, et al. Rapid de complexation of Ni-EDTA by microwave-assisted Fenton reaction[J]. Chem Eng J, 2020, 381: 122703. doi: 10.1016/j.cej.2019.122703
|
[19] |
Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating[J]. Appl Therm Eng, 2011, 31(16): 3255-3261. doi: 10.1016/j.applthermaleng.2011.06.006
|
[20] |
Guo C, Wang Y, Luan D. Study the synergism of microwave thermal and non-thermal effects on microbial inactivation and fatty acid quality of salmon fillet during pasteurization process[J]. LWT, 2021, 152: 112280. doi: 10.1016/j.lwt.2021.112280
|
[21] |
Liu Z, Meng H, Zhang H, et al. Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuO x/GAC catalytic oxidation process[J]. Sep Purif Technol, 2018, 193: 49-57. doi: 10.1016/j.seppur.2017.11.010
|