• 右
  • 左
NIU Ting-ting, WANG Jian-jun, WU Wang-suo, ZHANG Lan. Preparation of Functionalized Fe3O4 Magnetic Particles and Evaluation of Its Potency in Separating Strontium(Ⅱ)[J]. Journal of Nuclear and Radiochemistry, 2012, 34(3): 166-173.
Citation: NIU Ting-ting, WANG Jian-jun, WU Wang-suo, ZHANG Lan. Preparation of Functionalized Fe3O4 Magnetic Particles and Evaluation of Its Potency in Separating Strontium(Ⅱ)[J]. Journal of Nuclear and Radiochemistry, 2012, 34(3): 166-173.

Preparation of Functionalized Fe3O4 Magnetic Particles and Evaluation of Its Potency in Separating Strontium(Ⅱ)

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Amino-modified silicacoated ferromagnetic particles coated with benzo-18-crown-6 by condensation reaction have been evaluated for the application in the separation of strontium from aqueous solution. Its structure was analyzed by FTIR, TEM, XRD and VSM. The effect of contact time, temperature and Sr2+ mass concentration on the uptake of Sr2+ was systematically studied. The result indicates that the equilibrium can be reached within 60 min. The Kd value increases with the elevated temperature and decreased concentration of Sr2+. The adsorption agrees well with Freundlich adsorption equation and the pseudo-second rate equation. The desorption studies demonstrate the possibility of particles recycling.
  • [1]
    Todd T A, Batcheller T A, Law J D, et al. Cesium and Strontium Separation Technologies Literature Review: INEEL/EXT-04-01895[R]. America: Idaho National Engineering and Environmental Laboratory, 2004.
    [2]
    Zhang A Y, Wei Y Z, Mikio K. Impregnation Synthesis of a Novel Macroporous Silica-Based Crown Ether Polymeric Material Modified by 1-Dodecanol and Its Adsorption for Strontium and Some Coexistent Metals[J]. Sep Purif Technol, 2008, 62: 407-414.
    [3]
    Shaibu B S, Reddy M L P, Bhattacharyya A, et al. Evaluation of Cyanex 923-Coated Magnetic Particles for the Extraction and Separation of Lanthanides and Actinides From Nuclear Waste Streams[J]. J Magn Magn Mater, 2006, 301: 312-318.
    [4]
    Nueza L, Buchholza B A, Kaminski M, et al. Actinide Separation of High-Level Waste Using Solvent Extractants on Magnetic Microparticles[J]. Sep Sci Technol, 1996, 31: 1 393-1 407.
    [5]
    Grüttner C, Bhmer V, Casnati A, et al. Dendrimer-Coated Magnetic Particles for Radionuclide Separation[J]. J Magn Magn Mater, 2005, 293: 559-566.
    [6]
    Buchholza B A, Tuazon H E, Kaminski M D, et al. Optimizing the Coating Process of Organic Actinide Extractants on Magnetically Assisted Chemical Separation Particles[J]. Sep Purif Technol, 1997, 11: 211-219.
    [7]
    Kaminski M D, Nueza L, Visser A E . Evaluation of Extractant-Coated Magnetic Microparticles for the Recovery of Hazardous Metals From Waste Solution[J]. Sep Sci Technol, 1997, 34: 1 103-1 120.
    [8]
    Ebner A D, Ritter J A, Navratil J D. Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a Magnetite-Silica Composite[J]. Ind Eng Chem Res, 2001, 40: 1 615-1 623.
    [9]
    Nueza L, Michael D K. Transuranic Separation Using Organophosphorus Extractants Adsorbed Onto Superparamagnetic Carriers[J]. J Magn Magn Mater, 1999, 194: 102-107.
    [10]
    Matthews S E, Parzuchowski P, Alejandro G C, et al. Extraction of Lanthanides and Actinides by a Magnetically Assisted Chemical Separation Technique Based on CMPO-Calix[4] Arenes[J]. Chem Commun, 2001, 5: 417-418.
    [11]
    Kumar A, Mohapatra P K, Pathak P N, et al. Dicyclohexano 18 Crown 6 in Butanol-Octanol Mixture: A Promising Extractant of Sr(II) From Nitric Acid Medium[J]. Talanta, 1997, 45: 387395.
    [12]
    Raut D R, Mohapatra P K, Manchanda V K. Extraction of Radio-Strontium From Nitric Acid Medium Using Di-Tert-Butyl Cyclohexano18-Crown-6 (DTBCH18C6) in Toluene-1-Octanol Diluent[J]. Mixt Sep Sci Technol, 2010, 45: 204-211.
    [13]
    McDowell W J. Crown Ethers as Solvent Extraction Reagents: Where Do We Stand? [J]. Sep Sci Technol, 1988, 23: 1 251-1 268.
    [14]
    Shehata F A. Extraction of Strontium From Nitric Acid Solutions by Selected Crown Ethers[J]. J Radioanal Nucl Chem, 1994, 185: 411-417.
    [15]
    Blasius E, Klein W, Schn U. Separation of Strontium From Nuclear Waste Solutions by Solvent Extraction With Crown Ethers[J]. J Radioanal Nucl Chem, 1985, 89 (2): 389-392.
    [16]
    Matel L, Bilbao T. Extraction of Strontium Using an Irradiated Extraction Agent of Crown Structure[J].J Radioanal Nucl Chem, 1989, 137: 183-190.
    [17]
    Yakshin V V. Extractive Separation of Radionuclides of Cesium and Strontium With Crown Ethers[J]. Doklady Akademii Nauk, 1992(325): 967-969.
    [18]
    Yakshin V V, Vilkova O M, Tsarenko N A, et al. Control of the Selectivity of 18-Crown-6 Derivatives in the Extraction of Alkali Metals From Nitric Acid Solutions[J]. Doklady Akademii Nauk, 2005(402): 778-780.
    [19]
    Zhang A Y, Wei Y Z, Mikio K. Synthesis of a Novel Macroporous Silica-Based Polymeric Material Containing 4, 4′,(5′)-Di(Tert-Butylcyclohexano)-18-Crown-6 Functional Group and Its Adsorption Mechanism for Strontium[J]. React Funct Polym, 2004, 61: 191-202.
    [20]
    Zhao M W, Zheng L Q, Bai X T, et al. Fabrication of Silica Nanoparticles and Hollow Spheres Using Ionic Liquid Microemulsion Droplets as Templates[J]. Colloids Surf, A, 2009(346): 229-236.
    [21]
    Blaaderen A V. Monodisperse Colloidal Silica Spheres From Tetraalkoxysilanes:Particle Formation and Growth Mechanism[J]. J Colloid Interface Sci, 1992, 154(2): 481-500.
    [22]
    Stber W, Fink A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. J Colloid Interface Sci, 1968, 26: 62-69.
    [23]
    张国欣,刘静培,沈华,等.氨基功能化磁性FeO(OH)纳米棒的制备研究[J].功能材料,2011,42(6):1 134-1 136.
    [24]
    陈令允,李凤生,姜炜,等.强磁性纳米Fe3O4/SiO2复合粒子的制备及其性能研究[J].材料科学与工程学报,2005,23(5):556-567.
    [25]
    杜雪岩,马芬,李芳,等.Fe3O4/SiO2磁性纳米粒子的制备及表征[J].兰州理工大学学报,2011, 37(2):22-25.
    [26]
    于世钧,黎明,陈艳琴.双苯并冠醚的结构表征[J].辽宁师范大学自然科学学报,1991,14(2):124-127.
  • Related Articles

    [1]HOU Lin-yi, ZHANG An-yun, GU Wen-hao. Advances in Desorption of Uranium From Loaded Amidoxime Chelating Materials[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 500-514. DOI: 10.7538/hhx.2022.YX.2021005
    [2]WU Xiao-hua, WANG Gang, LI Wei-min. Irradiation Damage in Rutile by Molecular Dynamics Simulation[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 278-284. DOI: 10.7538/hhx.2020.YX.2019083
    [3]XIA Miao-ren, LIU Zi-yi, CHAI Zhi-fang, WANG Dong-qi. Advances in Force Field Development and Molecular Dynamics Simulation of Lanthanides and Actinides[J]. Journal of Nuclear and Radiochemistry, 2019, 41(1): 91-114. DOI: 10.7538/hhx.2019.41.01.0091
    [4]LI Yang-juan, CHENG Zhi-qiang, DOU Qiang, LI Sa-sa, LONG De-wu, LI Qing-nuan. MoF6 Desorption From NaF Adsorbent[J]. Journal of Nuclear and Radiochemistry, 2017, 39(1): 43-49. DOI: 10.7538/hhx.2016.YX.2015099
    [5]HUANG Gang, LONG Xing-gui, LIANG Jian-hua, PENG Shu-ming, YANG Ben-fu. Kinetic Isotope Effects of Desorption for Zirconium Deuteride and Tritide[J]. Journal of Nuclear and Radiochemistry, 2010, 32(3): 167-171.
    [6]~(110)Ag~m Sorption and Desorption on Daya Bay Surface Sediment[J]. Journal of Nuclear and Radiochemistry, 2005, 27(3): 158-158.
    [7]Sorption Behavior of Pu on Granite[J]. Journal of Nuclear and Radiochemistry, 2005, 27(3): 136-136.
    [8]Determination of the Equilibrium Desorption Isotherms for Aged Uranium Tritides[J]. Journal of Nuclear and Radiochemistry, 2004, 26(2): 114-114.
    [9]STUDY OF SORPTION OF TECHNETIUM ON PYRRHOTINE[J]. Journal of Nuclear and Radiochemistry, 2001, 23(2): 72-72.
    [10]A STUDY ON THE SELECTIVE ADSORPTION AND DESORPTION OF BROMINE[J]. Journal of Nuclear and Radiochemistry, 1986, 08(1): 60-60.

Catalog

    Article views (523) PDF downloads (2155) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return