• 右
  • 左
WANG Xiang-xue, LI Jie, YU Shu-jun, ZHANG Rui, LI Jia-xing, WANG Xiang-ke. Sorption Mechanism of Radionuclides on Clay Minerals and Manmade Nanomaterials[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 329-340. DOI: 10.7538/hhx.2015.37.05.0329
Citation: WANG Xiang-xue, LI Jie, YU Shu-jun, ZHANG Rui, LI Jia-xing, WANG Xiang-ke. Sorption Mechanism of Radionuclides on Clay Minerals and Manmade Nanomaterials[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 329-340. DOI: 10.7538/hhx.2015.37.05.0329

Sorption Mechanism of Radionuclides on Clay Minerals and Manmade Nanomaterials

More Information
  • Large amounts of radionuclides are inevitably released into the environment with the development of nuclear power energy, which is dangerous to environment and human health. In this review, the different methods, such as X-ray absorption fine structure spectroscopy, time resolved laser fluorescence spectroscopy, X-ray photoelectric spectroscopy, surface complexation modeling and computational calculation, for the characterization of radionuclide sorption and interaction mechanism on solid-water interfaces and the research works in China were reviewed and discussed. The contents in this review are helpful for researchers to carry out research works about the physicochemical behavior of radionuclides in the natural environment.
  • [1]
    Wang X K, Chen C L, Du J Z, et al. Effect of pH and aging time on the kinetic dissociation of 243Am(Ⅲ) from humic acid coated γ-Al2O3: a chelating resin exchange study[J]. Environ Sci Technol, 2005, 39(18): 7084-7088.
    [2]
    Liu P, Qi W, Du Y F, et al. Adsorption of thorium(Ⅳ) on magnetic multi-walled carbon nanotubes[J]. Sci China Chem, 2014, 57: 1483-1490.
    [3]
    Yu T, Fan Q H, Wu W S, et al. Sorption of Am(Ⅲ) on attapulgite/iron oxide magnetic composites: effect of pH, ionic strength and humic acid[J]. Radiochim Acta, 2012, 100: 753-758.
    [4]
    邵大冬,许笛,王所伟,等.pH值和离子强度对放射性核素镍在MX-80黏土上的吸附影响和模型研究[J].中国科学B辑:化学,2008,38:1025-1034.
    [5]
    许君政,范桥辉,白洪彬,等.离子强度、温度、pH和腐殖酸浓度对Th(Ⅳ)在凹凸棒石上吸附的影响[J].核化学与放射化学,2009,31(3):179-185.
    [6]
    胡君,谢治,贺博,等.静态法和X射线精细结构光谱技术研究腐殖酸对Eu(Ⅲ)在高庙子膨润土上吸附影响[J].中国科学B辑:化学,2010,40:567-576.
    [7]
    Yang S T, Sheng G D, Tan X L, et al. Determination of Ni(Ⅱ) sorption mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach[J]. Geochim Cosmochim Acta, 2011, 75: 6520-6534.
    [8]
    Yang S B, Hu J, Chen C L, et al. Mutual effect of Pb(Ⅱ) and humic acid adsorption onto multiwalled carbon nanotubes/poly (acrylamide) composites from aqueous solution[J]. Environ Sci Technol, 2011, 45(8): 3621-3627.
    [9]
    Lv K, Zhao G X, Wang X K. A brief review of grapheme-based material synthesis and its application in environmental pollution management[J]. Chinese Sci Bulletin, 2012, 57: 1223-1234.
    [10]
    谭小丽.放射性核素与重金属离子在氧化物上的吸附及机理研究[D].北京:中国科学院研究生院,2009.
    [11]
    Chen C L, Wang X K, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environ Sci Technol, 2009, 43 (7): 2362-2367.
    [12]
    Sheng G D, Yang S T, Sheng J, et al. Macroscopic and microscopic investigation of Ni(Ⅱ) sequestration on diatomite by batch, XPS and EXAFS techniques[J]. Environ Sci Technol, 2011, 45: 7718-7726.
    [13]
    盛国栋,杨世通,赵东林,等.静态法和EXAFS技术研究Eu(Ⅲ)在钛酸纳米管上的吸附行为和微观机制[J].中国科学B辑:化学,2012,42(1):60-73.
    [14]
    杨世通,盛国栋,郭志强,等.静态法和EXAFS技术研究放射性核素63Ni(Ⅱ)在丝光沸石上的吸附机理[J].中国科学B辑:化学,2012,42(6):844-855.
    [15]
    盛国栋,杨世通,郭志强,等.纳米材料和纳米技术在核废料处理中的应用研究进展[J].核化学与放射化学,2012,34(6):321-330.
    [16]
    Sun Y B, Li J X, Wang X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochim Cosmochim Acta, 2014, 140: 621-643.
    [17]
    Wang X X, Zhang S W, Li J X, et al. Fabrication of Fe/Fe3C porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(Ⅵ) from solution[J]. Inorg Chem Front, 2014(1): 641-648.
    [18]
    任雪梅,杨鑫,赵桂霞,等.等离子体诱导乙烯吡啶修饰多壁碳纳米管富集放射性核素Co(Ⅱ)[J].核化学与放射化学,2012,34(6):331-336.
    [19]
    杨鑫,任雪梅,吴西林,等.纳米球状碳酸钙对水中铀酰离子的吸附[J].核化学与放射化学,2012,34(6):337-340.
    [20]
    迟亚玲,陈元涛,邵大冬,等.时间、固液比、pH值、离子强度、腐殖酸等因素对钴离子在凹凸棒石上吸附的影响[J].核化学与放射化学,2012, 34(6):347-351.
    [21]
    陈亮,于少明,胡君.放射性核素63Ni(Ⅱ)在膨润土上的吸附[J].核化学与放射化学,2012,34(6):352-357.
    [22]
    Wang X Y, Chen T, Liu C L. Models used in deep geological deposit of high-level radioactive waste[J]. Progress Chem, 2011, 23: 1400-1410.
    [23]
    Wang X Y, Chen T, Liu C L. Chemical speciation code CHEMSPEC and its applications[J]. Sci China B: Chem, 2009, 52: 2020-2032.
    [24]
    Chen Z Y, Jin Q, Guo Z J, et al. Surface complexation modeling of Eu(Ⅲ) and phosphate on Na-bentonite: binary and ternary adsorption systems[J]. Chem Eng J, 256: 61-68.
    [25]
    Ye Y L, Chen Z Y, Montavon G, et al. Surface complexation modeling of Eu(Ⅲ) adsorption on silica in the presence of fulvic acid[J]. Sci China Chem, 2014, 57: 1276-1282.
    [26]
    Hou Z X, Shi K L, Wang X L, et al. Investigation of Se(Ⅳ) sorption on Na-kaolinite: batch experiments and modeling[J]. J Radioanal Nucl Chem, 2015, 303: 25-31.
    [27]
    Jin Q, Wang G, Ge M T, et al. The adsorption of Eu(Ⅲ) and Am(Ⅲ) on Beishan granite: XPS, EPMA, batch and modeling study[J]. Appl Geochem, 2014, 47: 17-24.
    [28]
    Fan Q H, Guo Z J, Wu W S. Radionuclide sorption at solid-water surfaces: models and applications[J]. Progress Chem, 2011, 23: 1429-1445.
    [29]
    Guo Z J, Xu J, Shi K L, et al. Eu(Ⅲ) adsorption/desorption on Na-bentonite: experimental and modeling studies[J]. Colloid Surf A, 2009, 339: 126-133.
    [30]
    Guo Z J, Su H Y, Wu W S. Sorption and desorption of uranium(Ⅵ) on silica: experimental and modeling studies[J]. Radiochim Acta, 2009, 97: 133-140.
    [31]
    Hu J, Chen C L, Sheng G D, et al. Adsorption of Sr(Ⅱ) and Eu(Ⅲ) on Na-rectorite: effect of pH, ionic strength, concentration and modeling[J]. Radiochim Acta, 2010, 98: 421-429.
    [32]
    Tan X L, Hu J, Montavon G, et al. Sorption speciation of nickel(Ⅱ) onto Ca-montmorillonite: batch, EXAFS techniques and modeling[J]. Dalton Trans, 2011, 40: 10953-10960.
    [33]
    Sun Y B, Yang S T, Sheng G D, et al. Comparison of U(Ⅵ) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina[J]. Sep Purif Technol, 2011, 83: 196-203.
    [34]
    Sun Y B, Wang Q, Chen C L, et al. Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by Batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environ Sci Technol, 2012, 46 (11): 6020-6027.
    [35]
    Yang Z W, Kang M L, Ma B, et al. Inhibition of U(Ⅵ) reduction by synthetic and natural pyrite[J]. Environ Sci Technol, 2014, 48(18): 10716-10724.
    [36]
    Tan X L, Fan Q H, Wang X K, et al. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS study[J]. Environ Sci Technol, 2009, 43(9): 3115-3121.
    [37]
    Fan Q H, Tan X L, Li J X, et al. Sorption of Eu(Ⅲ) on attapulgite studied by batch, XPS and EXAFS techniques[J]. Environ Sci Technol, 2009, 43(15): 5776-5782.
    [38]
    Yang S T, Sheng G D, Montavon G, et al. Investigation of Eu(Ⅲ) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analysis: role of contact time and humic acid[J]. Geochim Cosmochim Acta, 2013, 121: 84-104.
    [39]
    Sun Y B, Shao D D, Chen C L, et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline[J]. Environ Sci Technol, 2013, 47: 9904-9910.
    [40]
    Hu J, Xie Z, He B. Sorption of Eu(Ⅲ) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques[J]. Sci China B: Chem, 2010, 53: 1420-1428.
    [41]
    Tan X L, Fang M, Wang X K. Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT study: a review[J]. Molecules, 2010, 15: 8431-8468.
    [42]
    Hu J, Tan X L, Ren X M. Effect of humic acid on nickel(Ⅱ) sorption to Ca-montmorillonite by batch and EXAFS techniques study[J]. Dalton Trans, 2012, 41: 10803-10810.
    [43]
    Sheng G D, Yang S T, Zhao D L, et al. Adsorption of Eu(Ⅲ) on titanate nanotubes studied by a combination of batch and EXAFS technique[J]. Sci China Chem, 2012, 55: 182-194.
    [44]
    Yang S T, Sheng G D, Guo Z Q, et al. Investigation of radionuclide 63Ni(Ⅱ) sequestration mechanisms on mordenite by batch and EXAFS spectroscopy study[J]. Sci China Chem, 2012, 55: 632-642.
    [45]
    王祥科,郑善良.荧光衰减光谱法研究Eu(Ⅲ)在氧化铝表面的化学形态[J].核化学与放射化学,2005,27(2):108-112.
    [46]
    Tan X L, Wang X K, Geckeis H, et al. Sorption of Eu(Ⅲ) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques[J]. Environ Sci Technol, 2008, 42(17): 6532-6537.
    [47]
    Wang X K, Rabung T, Geckeis H, et al. Effect of humic acid on the sorption of Cm(Ⅲ) onto γ-Al2O3 studied by the time resolved laser fluorescence spectroscopy[J]. Radiochim Acta, 2004, 92: 691-695.
    [48]
    Wang X X, Sun Y B, Wang X K. Interaction mechanism of Eu(Ⅲ) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques[J]. Chem Eng J, 2015, 264: 570-576.
    [49]
    Wang X K, Chen C L, Hu W P, et al. Sorption of 243Am(Ⅲ) to multi-wall carbon nanotubes[J]. Environ Sci Technol, 2005, 39(8): 2856-2860.
    [50]
    Chen C L, Wang X K. Adsorption of Ni(Ⅱ) from aqueous solution using oxidized multi-walled carbon nanotubes[J]. Ind Eng Chem Res, 2006, 45: 9144-9149.
    [51]
    Li Y, Wang C L, Guo Z J, et al. Sorption of thorium(Ⅳ) from aqueous solutions by graphene oxide[J]. J Radioanal Nucl Chem, 2014, 299(3): 1683-1691.
    [52]
    Zhao G X, Li J X, Ren X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environ Sci Technol, 2011, 45: 10454-10462.
    [53]
    Zhao G X, Ren X M, Gao X, et al. Removal of Pb(Ⅱ) ions from aqueous solutions on few-layered graphene oxide nanosheets[J]. Dalton Trans, 2011, 40: 10945-10952.
    [54]
    Li J, Zhang S W, Chen C L, et al. Removal of Cu(Ⅱ) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS Appl Mater Interf, 2012(4): 4991-5000.
    [55]
    Sun Y B, Yang S B, Chen Y, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environ Sci Technol, 2015, 49: 4255-4262.
    [56]
    Yang S B, Chen C L, Chen Y, et al. Competitive adsorption of Pb(Ⅱ), Ni(Ⅱ) and Sr(Ⅱ) ions on graphene oxides: a combined experimental and theoretical study[J]. Chem Plus Chem, 2015, 80: 480-484.
    [57]
    Hu R, Shao D D, Wang X K. Graphene oxide/polypyrrole composites for highly selective enrichment of U(Ⅵ) from aqueous solutions[J]. Polym Chem, 2014(5): 6207-6215.
    [58]
    Song L J, Wang Y L, Zhu L, et al. Surface modification to improve the sorption property of U(Ⅵ) on mesoporous silica[J]. J Radioanal Nucl Chem, 2014, 299: 1589-1595.
    [59]
    Shao D D, Jiang Z Q, Wang X K, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2+2 from aqueous solution[J]. J Phys Chem B, 2009, 113: 860-864.
    [60]
    Chen H, Li J, Shao D, et al. Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(Ⅱ) removal from aqueous solution[J]. Chem Eng J, 2012, 210: 475-481.
    [61]
    Song W C, Wang X X, Wang Q, et al. Plasma induced grafting polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Phys Chem Chem Phys, 2015, 17: 398-406.
    [62]
    Lan J H, Shi W Q, Yuan L Y, et al. Recent advances in computational modeling and simulations on the An(Ⅲ)/Ln(Ⅲ) separation process[J]. Coordination Chem Rev, 2012, 256(13-14): 1406-1417.
    [63]
    Xiao C L, Wang C Z, Lan J H, et al. Selective separation of Am(Ⅲ) from Eu(Ⅲ) by 2, 9-bis(dialkyl-1, 2, 4-triazin-3-yl)-1, 10-phenanthrolines: a relativistic quantum chemistry study[J]. Radiochim Acta, 2014, 102(10): 875-886.
    [64]
    Wang C Z, Shi W Q, Lan J H, et al. Complexation behavior of Eu(Ⅲ) and Am(Ⅲ) with CMPO and Ph2CMPO ligands: insights from density functional theory[J]. Inorg Chem, 2013, 52(19): 10904-10911.
    [65]
    Wang C Z, Lan J H, Feng Y X, et al. Extraction complexes of Pu(Ⅳ) with carbamoylmethylphosphine oxide ligands: a relativistic density functional study[J]. Radiochim Acta, 2014, 102(1-2): 77-86.
    [66]
    Wang C Z, Lan J H, Wu Q Y, et al. Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides[J]. Dalton Trans, 2014, 43(23): 8713-8720.
    [67]
    Xi J, Lan J H, Lu G W, et al. A density functional theory study of complex species and reactions of Am(Ⅲ)/Eu(Ⅲ) with nitrate anions[J]. Molecular Simulation, 2014, 40(5): 379-386.
    [68]
    Wu Q Y, Lan J H, Wang C Z, et al. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study[J]. J Phys Chem A, 2014, 118(11): 2149-2158.
    [69]
    Wu Q Y, Lan J H, Wang C Z, et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations[J]. J Phys Chem A, 2014, 118(44):10273-10280.
    [70]
    Wang C Z, Lan J H, Wu Q Y, et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups[J]. Inorg Chem, 2014, 53(18): 9466-9476.
  • Related Articles

    [1]TANG Qing-feng, XU Zhen, SUN Ya-lou, ZHANG Qi, TAN Qi, PAN Duo-qiang, WU Wang-suo. Progress on Effect of Clay Mineral-Biocomposite Colloids on Radionuclides Migration and Mechanism[J]. Journal of Nuclear and Radiochemistry, 2025, 47(1): 1-16. DOI: 10.7538/hhx.2025.47.01.0001
    [2]ZHANG Hong-sen, LI Ming, LIU Qi, WANG Jun. Preparation of Copper Nanoparticle-Loaded Graphitic Carbon Nitride and Photocatalytic Reduction of Uranium[J]. Journal of Nuclear and Radiochemistry, 2024, 46(4): 387-395. DOI: 10.7538/hhx.2024.46.04.0387
    [3]WANG Xiang-xue, YU Shu-qi, SHI Lei, DIAO Zhuo-fan, WANG Xiang-ke. Removal of Radionuclides by Nanoscale Zero Valent Iron Materials and Their Interaction Mechanism[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 328-341. DOI: 10.7538/hhx.2019.41.04.0328
    [4]ZHAO Min, FAN Fu-you, SUN Ya-lou, TANG Jun-hao, HU Ya-meng, PAN Duo-qiang, WU Wang-suo. Application of Functional Nanomaterials on Purification of Uranium-Containing Wastewater[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 311-327. DOI: 10.7538/hhx.2019.41.04.0311
    [5]SI Gao-hua, YU Jing, WANG Qing-hai, HUANG Yun-gui, ZHANG Rui-rong, HU Zhi-qian. Migration Experiment of Plutonium in Clay[J]. Journal of Nuclear and Radiochemistry, 2013, 35(1): 29-33. DOI: 10.7538/hhxyfshx.2013.35.01.0029
    [6]SHENG Guo-dong, YANG Shi-tong, GUO Zhi-qiang, SUN Yu-bing, TAN Xiao-li, CHEN Chang-lun, SHAO Da-dong, WANG Xiang-ke. Research Progress of Nanomaterials and Nanotechnology in the Application to Nuclear Waste Management[J]. Journal of Nuclear and Radiochemistry, 2012, 34(6): 321-330.
    [7]FAN Qiao-hui, NIU Zhi-wei, XU Jun-zheng, GUO Zhi-jun, WU Wang-suo. Adsorption of Radionuclides on Oxides, Phosphates and Clay Minerals: Studying on Thermodynamic and Micro-Speciation[J]. Journal of Nuclear and Radiochemistry, 2012, 34(3): 129-141.
    [8]CHEN Zhen-ling, ZHAO Yu-liang, CHAI Zhi-fang. Synthesis and Characterization of Nanostructural Materials by Neutron Irradiation Catalysis[J]. Journal of Nuclear and Radiochemistry, 2009, 31(专刊): 75-85.
    [9]KANG Hou-jun, WU Tao, ZHANG Dong, SHI Zheng-kun. Adsorption of Sr and Cs by Clay From Different Area[J]. Journal of Nuclear and Radiochemistry, 2007, 29(2): 123-128.
    [10]SORPTION MECHANISM OF RADIONUCLIDES ON CLAY MINERAL AND ZEOLITE FROM NaCl-NaAc AQUEOUS SOLUTIONS[J]. Journal of Nuclear and Radiochemistry, 1992, 14(1): 53-53.

Catalog

    Article views (1294) PDF downloads (5514) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return