Citation: | WANG Xiang-xue, LI Jie, YU Shu-jun, ZHANG Rui, LI Jia-xing, WANG Xiang-ke. Sorption Mechanism of Radionuclides on Clay Minerals and Manmade Nanomaterials[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 329-340. DOI: 10.7538/hhx.2015.37.05.0329 |
[1] |
Wang X K, Chen C L, Du J Z, et al. Effect of pH and aging time on the kinetic dissociation of 243Am(Ⅲ) from humic acid coated γ-Al2O3: a chelating resin exchange study[J]. Environ Sci Technol, 2005, 39(18): 7084-7088.
|
[2] |
Liu P, Qi W, Du Y F, et al. Adsorption of thorium(Ⅳ) on magnetic multi-walled carbon nanotubes[J]. Sci China Chem, 2014, 57: 1483-1490.
|
[3] |
Yu T, Fan Q H, Wu W S, et al. Sorption of Am(Ⅲ) on attapulgite/iron oxide magnetic composites: effect of pH, ionic strength and humic acid[J]. Radiochim Acta, 2012, 100: 753-758.
|
[4] |
邵大冬,许笛,王所伟,等.pH值和离子强度对放射性核素镍在MX-80黏土上的吸附影响和模型研究[J].中国科学B辑:化学,2008,38:1025-1034.
|
[5] |
许君政,范桥辉,白洪彬,等.离子强度、温度、pH和腐殖酸浓度对Th(Ⅳ)在凹凸棒石上吸附的影响[J].核化学与放射化学,2009,31(3):179-185.
|
[6] |
胡君,谢治,贺博,等.静态法和X射线精细结构光谱技术研究腐殖酸对Eu(Ⅲ)在高庙子膨润土上吸附影响[J].中国科学B辑:化学,2010,40:567-576.
|
[7] |
Yang S T, Sheng G D, Tan X L, et al. Determination of Ni(Ⅱ) sorption mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach[J]. Geochim Cosmochim Acta, 2011, 75: 6520-6534.
|
[8] |
Yang S B, Hu J, Chen C L, et al. Mutual effect of Pb(Ⅱ) and humic acid adsorption onto multiwalled carbon nanotubes/poly (acrylamide) composites from aqueous solution[J]. Environ Sci Technol, 2011, 45(8): 3621-3627.
|
[9] |
Lv K, Zhao G X, Wang X K. A brief review of grapheme-based material synthesis and its application in environmental pollution management[J]. Chinese Sci Bulletin, 2012, 57: 1223-1234.
|
[10] |
谭小丽.放射性核素与重金属离子在氧化物上的吸附及机理研究[D].北京:中国科学院研究生院,2009.
|
[11] |
Chen C L, Wang X K, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environ Sci Technol, 2009, 43 (7): 2362-2367.
|
[12] |
Sheng G D, Yang S T, Sheng J, et al. Macroscopic and microscopic investigation of Ni(Ⅱ) sequestration on diatomite by batch, XPS and EXAFS techniques[J]. Environ Sci Technol, 2011, 45: 7718-7726.
|
[13] |
盛国栋,杨世通,赵东林,等.静态法和EXAFS技术研究Eu(Ⅲ)在钛酸纳米管上的吸附行为和微观机制[J].中国科学B辑:化学,2012,42(1):60-73.
|
[14] |
杨世通,盛国栋,郭志强,等.静态法和EXAFS技术研究放射性核素63Ni(Ⅱ)在丝光沸石上的吸附机理[J].中国科学B辑:化学,2012,42(6):844-855.
|
[15] |
盛国栋,杨世通,郭志强,等.纳米材料和纳米技术在核废料处理中的应用研究进展[J].核化学与放射化学,2012,34(6):321-330.
|
[16] |
Sun Y B, Li J X, Wang X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochim Cosmochim Acta, 2014, 140: 621-643.
|
[17] |
Wang X X, Zhang S W, Li J X, et al. Fabrication of Fe/Fe3C porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(Ⅵ) from solution[J]. Inorg Chem Front, 2014(1): 641-648.
|
[18] |
任雪梅,杨鑫,赵桂霞,等.等离子体诱导乙烯吡啶修饰多壁碳纳米管富集放射性核素Co(Ⅱ)[J].核化学与放射化学,2012,34(6):331-336.
|
[19] |
杨鑫,任雪梅,吴西林,等.纳米球状碳酸钙对水中铀酰离子的吸附[J].核化学与放射化学,2012,34(6):337-340.
|
[20] |
迟亚玲,陈元涛,邵大冬,等.时间、固液比、pH值、离子强度、腐殖酸等因素对钴离子在凹凸棒石上吸附的影响[J].核化学与放射化学,2012, 34(6):347-351.
|
[21] |
陈亮,于少明,胡君.放射性核素63Ni(Ⅱ)在膨润土上的吸附[J].核化学与放射化学,2012,34(6):352-357.
|
[22] |
Wang X Y, Chen T, Liu C L. Models used in deep geological deposit of high-level radioactive waste[J]. Progress Chem, 2011, 23: 1400-1410.
|
[23] |
Wang X Y, Chen T, Liu C L. Chemical speciation code CHEMSPEC and its applications[J]. Sci China B: Chem, 2009, 52: 2020-2032.
|
[24] |
Chen Z Y, Jin Q, Guo Z J, et al. Surface complexation modeling of Eu(Ⅲ) and phosphate on Na-bentonite: binary and ternary adsorption systems[J]. Chem Eng J, 256: 61-68.
|
[25] |
Ye Y L, Chen Z Y, Montavon G, et al. Surface complexation modeling of Eu(Ⅲ) adsorption on silica in the presence of fulvic acid[J]. Sci China Chem, 2014, 57: 1276-1282.
|
[26] |
Hou Z X, Shi K L, Wang X L, et al. Investigation of Se(Ⅳ) sorption on Na-kaolinite: batch experiments and modeling[J]. J Radioanal Nucl Chem, 2015, 303: 25-31.
|
[27] |
Jin Q, Wang G, Ge M T, et al. The adsorption of Eu(Ⅲ) and Am(Ⅲ) on Beishan granite: XPS, EPMA, batch and modeling study[J]. Appl Geochem, 2014, 47: 17-24.
|
[28] |
Fan Q H, Guo Z J, Wu W S. Radionuclide sorption at solid-water surfaces: models and applications[J]. Progress Chem, 2011, 23: 1429-1445.
|
[29] |
Guo Z J, Xu J, Shi K L, et al. Eu(Ⅲ) adsorption/desorption on Na-bentonite: experimental and modeling studies[J]. Colloid Surf A, 2009, 339: 126-133.
|
[30] |
Guo Z J, Su H Y, Wu W S. Sorption and desorption of uranium(Ⅵ) on silica: experimental and modeling studies[J]. Radiochim Acta, 2009, 97: 133-140.
|
[31] |
Hu J, Chen C L, Sheng G D, et al. Adsorption of Sr(Ⅱ) and Eu(Ⅲ) on Na-rectorite: effect of pH, ionic strength, concentration and modeling[J]. Radiochim Acta, 2010, 98: 421-429.
|
[32] |
Tan X L, Hu J, Montavon G, et al. Sorption speciation of nickel(Ⅱ) onto Ca-montmorillonite: batch, EXAFS techniques and modeling[J]. Dalton Trans, 2011, 40: 10953-10960.
|
[33] |
Sun Y B, Yang S T, Sheng G D, et al. Comparison of U(Ⅵ) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina[J]. Sep Purif Technol, 2011, 83: 196-203.
|
[34] |
Sun Y B, Wang Q, Chen C L, et al. Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by Batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environ Sci Technol, 2012, 46 (11): 6020-6027.
|
[35] |
Yang Z W, Kang M L, Ma B, et al. Inhibition of U(Ⅵ) reduction by synthetic and natural pyrite[J]. Environ Sci Technol, 2014, 48(18): 10716-10724.
|
[36] |
Tan X L, Fan Q H, Wang X K, et al. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS study[J]. Environ Sci Technol, 2009, 43(9): 3115-3121.
|
[37] |
Fan Q H, Tan X L, Li J X, et al. Sorption of Eu(Ⅲ) on attapulgite studied by batch, XPS and EXAFS techniques[J]. Environ Sci Technol, 2009, 43(15): 5776-5782.
|
[38] |
Yang S T, Sheng G D, Montavon G, et al. Investigation of Eu(Ⅲ) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analysis: role of contact time and humic acid[J]. Geochim Cosmochim Acta, 2013, 121: 84-104.
|
[39] |
Sun Y B, Shao D D, Chen C L, et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline[J]. Environ Sci Technol, 2013, 47: 9904-9910.
|
[40] |
Hu J, Xie Z, He B. Sorption of Eu(Ⅲ) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques[J]. Sci China B: Chem, 2010, 53: 1420-1428.
|
[41] |
Tan X L, Fang M, Wang X K. Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT study: a review[J]. Molecules, 2010, 15: 8431-8468.
|
[42] |
Hu J, Tan X L, Ren X M. Effect of humic acid on nickel(Ⅱ) sorption to Ca-montmorillonite by batch and EXAFS techniques study[J]. Dalton Trans, 2012, 41: 10803-10810.
|
[43] |
Sheng G D, Yang S T, Zhao D L, et al. Adsorption of Eu(Ⅲ) on titanate nanotubes studied by a combination of batch and EXAFS technique[J]. Sci China Chem, 2012, 55: 182-194.
|
[44] |
Yang S T, Sheng G D, Guo Z Q, et al. Investigation of radionuclide 63Ni(Ⅱ) sequestration mechanisms on mordenite by batch and EXAFS spectroscopy study[J]. Sci China Chem, 2012, 55: 632-642.
|
[45] |
王祥科,郑善良.荧光衰减光谱法研究Eu(Ⅲ)在氧化铝表面的化学形态[J].核化学与放射化学,2005,27(2):108-112.
|
[46] |
Tan X L, Wang X K, Geckeis H, et al. Sorption of Eu(Ⅲ) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques[J]. Environ Sci Technol, 2008, 42(17): 6532-6537.
|
[47] |
Wang X K, Rabung T, Geckeis H, et al. Effect of humic acid on the sorption of Cm(Ⅲ) onto γ-Al2O3 studied by the time resolved laser fluorescence spectroscopy[J]. Radiochim Acta, 2004, 92: 691-695.
|
[48] |
Wang X X, Sun Y B, Wang X K. Interaction mechanism of Eu(Ⅲ) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques[J]. Chem Eng J, 2015, 264: 570-576.
|
[49] |
Wang X K, Chen C L, Hu W P, et al. Sorption of 243Am(Ⅲ) to multi-wall carbon nanotubes[J]. Environ Sci Technol, 2005, 39(8): 2856-2860.
|
[50] |
Chen C L, Wang X K. Adsorption of Ni(Ⅱ) from aqueous solution using oxidized multi-walled carbon nanotubes[J]. Ind Eng Chem Res, 2006, 45: 9144-9149.
|
[51] |
Li Y, Wang C L, Guo Z J, et al. Sorption of thorium(Ⅳ) from aqueous solutions by graphene oxide[J]. J Radioanal Nucl Chem, 2014, 299(3): 1683-1691.
|
[52] |
Zhao G X, Li J X, Ren X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environ Sci Technol, 2011, 45: 10454-10462.
|
[53] |
Zhao G X, Ren X M, Gao X, et al. Removal of Pb(Ⅱ) ions from aqueous solutions on few-layered graphene oxide nanosheets[J]. Dalton Trans, 2011, 40: 10945-10952.
|
[54] |
Li J, Zhang S W, Chen C L, et al. Removal of Cu(Ⅱ) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS Appl Mater Interf, 2012(4): 4991-5000.
|
[55] |
Sun Y B, Yang S B, Chen Y, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environ Sci Technol, 2015, 49: 4255-4262.
|
[56] |
Yang S B, Chen C L, Chen Y, et al. Competitive adsorption of Pb(Ⅱ), Ni(Ⅱ) and Sr(Ⅱ) ions on graphene oxides: a combined experimental and theoretical study[J]. Chem Plus Chem, 2015, 80: 480-484.
|
[57] |
Hu R, Shao D D, Wang X K. Graphene oxide/polypyrrole composites for highly selective enrichment of U(Ⅵ) from aqueous solutions[J]. Polym Chem, 2014(5): 6207-6215.
|
[58] |
Song L J, Wang Y L, Zhu L, et al. Surface modification to improve the sorption property of U(Ⅵ) on mesoporous silica[J]. J Radioanal Nucl Chem, 2014, 299: 1589-1595.
|
[59] |
Shao D D, Jiang Z Q, Wang X K, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2+2 from aqueous solution[J]. J Phys Chem B, 2009, 113: 860-864.
|
[60] |
Chen H, Li J, Shao D, et al. Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(Ⅱ) removal from aqueous solution[J]. Chem Eng J, 2012, 210: 475-481.
|
[61] |
Song W C, Wang X X, Wang Q, et al. Plasma induced grafting polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Phys Chem Chem Phys, 2015, 17: 398-406.
|
[62] |
Lan J H, Shi W Q, Yuan L Y, et al. Recent advances in computational modeling and simulations on the An(Ⅲ)/Ln(Ⅲ) separation process[J]. Coordination Chem Rev, 2012, 256(13-14): 1406-1417.
|
[63] |
Xiao C L, Wang C Z, Lan J H, et al. Selective separation of Am(Ⅲ) from Eu(Ⅲ) by 2, 9-bis(dialkyl-1, 2, 4-triazin-3-yl)-1, 10-phenanthrolines: a relativistic quantum chemistry study[J]. Radiochim Acta, 2014, 102(10): 875-886.
|
[64] |
Wang C Z, Shi W Q, Lan J H, et al. Complexation behavior of Eu(Ⅲ) and Am(Ⅲ) with CMPO and Ph2CMPO ligands: insights from density functional theory[J]. Inorg Chem, 2013, 52(19): 10904-10911.
|
[65] |
Wang C Z, Lan J H, Feng Y X, et al. Extraction complexes of Pu(Ⅳ) with carbamoylmethylphosphine oxide ligands: a relativistic density functional study[J]. Radiochim Acta, 2014, 102(1-2): 77-86.
|
[66] |
Wang C Z, Lan J H, Wu Q Y, et al. Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides[J]. Dalton Trans, 2014, 43(23): 8713-8720.
|
[67] |
Xi J, Lan J H, Lu G W, et al. A density functional theory study of complex species and reactions of Am(Ⅲ)/Eu(Ⅲ) with nitrate anions[J]. Molecular Simulation, 2014, 40(5): 379-386.
|
[68] |
Wu Q Y, Lan J H, Wang C Z, et al. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study[J]. J Phys Chem A, 2014, 118(11): 2149-2158.
|
[69] |
Wu Q Y, Lan J H, Wang C Z, et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations[J]. J Phys Chem A, 2014, 118(44):10273-10280.
|
[70] |
Wang C Z, Lan J H, Wu Q Y, et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups[J]. Inorg Chem, 2014, 53(18): 9466-9476.
|
[1] | TANG Qing-feng, XU Zhen, SUN Ya-lou, ZHANG Qi, TAN Qi, PAN Duo-qiang, WU Wang-suo. Progress on Effect of Clay Mineral-Biocomposite Colloids on Radionuclides Migration and Mechanism[J]. Journal of Nuclear and Radiochemistry, 2025, 47(1): 1-16. DOI: 10.7538/hhx.2025.47.01.0001 |
[2] | ZHANG Hong-sen, LI Ming, LIU Qi, WANG Jun. Preparation of Copper Nanoparticle-Loaded Graphitic Carbon Nitride and Photocatalytic Reduction of Uranium[J]. Journal of Nuclear and Radiochemistry, 2024, 46(4): 387-395. DOI: 10.7538/hhx.2024.46.04.0387 |
[3] | WANG Xiang-xue, YU Shu-qi, SHI Lei, DIAO Zhuo-fan, WANG Xiang-ke. Removal of Radionuclides by Nanoscale Zero Valent Iron Materials and Their Interaction Mechanism[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 328-341. DOI: 10.7538/hhx.2019.41.04.0328 |
[4] | ZHAO Min, FAN Fu-you, SUN Ya-lou, TANG Jun-hao, HU Ya-meng, PAN Duo-qiang, WU Wang-suo. Application of Functional Nanomaterials on Purification of Uranium-Containing Wastewater[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 311-327. DOI: 10.7538/hhx.2019.41.04.0311 |
[5] | SI Gao-hua, YU Jing, WANG Qing-hai, HUANG Yun-gui, ZHANG Rui-rong, HU Zhi-qian. Migration Experiment of Plutonium in Clay[J]. Journal of Nuclear and Radiochemistry, 2013, 35(1): 29-33. DOI: 10.7538/hhxyfshx.2013.35.01.0029 |
[6] | SHENG Guo-dong, YANG Shi-tong, GUO Zhi-qiang, SUN Yu-bing, TAN Xiao-li, CHEN Chang-lun, SHAO Da-dong, WANG Xiang-ke. Research Progress of Nanomaterials and Nanotechnology in the Application to Nuclear Waste Management[J]. Journal of Nuclear and Radiochemistry, 2012, 34(6): 321-330. |
[7] | FAN Qiao-hui, NIU Zhi-wei, XU Jun-zheng, GUO Zhi-jun, WU Wang-suo. Adsorption of Radionuclides on Oxides, Phosphates and Clay Minerals: Studying on Thermodynamic and Micro-Speciation[J]. Journal of Nuclear and Radiochemistry, 2012, 34(3): 129-141. |
[8] | CHEN Zhen-ling, ZHAO Yu-liang, CHAI Zhi-fang. Synthesis and Characterization of Nanostructural Materials by Neutron Irradiation Catalysis[J]. Journal of Nuclear and Radiochemistry, 2009, 31(专刊): 75-85. |
[9] | KANG Hou-jun, WU Tao, ZHANG Dong, SHI Zheng-kun. Adsorption of Sr and Cs by Clay From Different Area[J]. Journal of Nuclear and Radiochemistry, 2007, 29(2): 123-128. |
[10] | SORPTION MECHANISM OF RADIONUCLIDES ON CLAY MINERAL AND ZEOLITE FROM NaCl-NaAc AQUEOUS SOLUTIONS[J]. Journal of Nuclear and Radiochemistry, 1992, 14(1): 53-53. |